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POWER SPECTRUM FROM AUTO-CORRELATION

Auto-correlation p(7) Power spectrum S(f)
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Einstein, Archives sciences phys. 37, 1914; Wiener, Acta Math. 55, 1930; Khintchine, Math. Annalen 109, 1934
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AUTO-CORRELATION OF EVENT SERIES

Auto-correlation
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AUTO-CORRELATION OF EVENT SERIES

Auto-correlation
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Similarity measure for event data p (x(t),x(t + T))
(e.g., Levenshtein metric, event synchronisation, ...)



EDIT DISTANCE™

® Distance d = minimize the cost to transform sequence a to sequence b

sequence b
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ﬁ
@

time (t)

Victor & Purpura, Network 8, 1997; Suzuki et al., Int. J. Bif. Chaos. 20, 2010 * modified Levenshtein distance



EDIT DISTANCE
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EDIT DISTANCE AS AUTO-COVARIANCE

d($,, &) = min AS(N +Nb—2|?€|

Marwan & Braun, Chaos 33, 2023

Edit distance (for binary events):
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EDIT DISTANCE AS AUTO-COVARIANCE

Edit distance (for binary events):

d($,, &) = min AS(N +Nb—2|c[€|
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EDIT DISTANCE AS AUTO-COVARIANCE

d($,, &) = min AS(N +Nb—2|c[€|
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Edit distance (for binary events):
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EDIT DISTANCE AS AUTO-COVARIANCE

d($,, &) = min AS(N +Nb—2|c[€|
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Edit distance (for binary events):
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EDIT DISTANCE AS AUTO-COVARIANCE

Edit distance (for binary events):

d($,, &) = min AS(N +Nb—2|c[€|
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EDIT DISTANCE AS AUTO-COVARIANCE

Edit distance (for binary events):

d($,, &) = min AS(N +Nb—2|9€|
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EDIT DISTANCE AS AUTO-COVARIANCE

Edit distance (for binary events):

d($,, &) = min AS(N +Nb—2|?€|
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EDIT DISTANCE-BASED SPECTRUM

Event series with two frequencies (W, =1/20, W, =1/12.7):
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EDIT DISTANCE-BASED SPECTRUM

Event series with two frequencies (W, =1/20, W, =1/12.7):
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EDIT DISTANCE-BASED SPECTRUM

Event series with two frequencies (W, =1/20, W, =1/12.7):
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EDIT DISTANCE-BASED SPECTRUM

Event series with two frequencies (W, =1/20, W, =1/12.7):
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INFLUENCE OF LENGTH AND NOISE

Periodic events ( W =1/12.7)
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ATMOSPHERIC RIVERS

Integrated water vapor transport (IVT)
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ATMOSPHERIC RIVERS

o Landfalling atmospheric
rivers

e Regional differences?
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ATMOSPHERIC RIVERS

British Isles
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POWERSPECTRA ATMOSPHERIC RIVERS

Low-category ARs High-category ARs
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POWERSPECTRA ATMOSPHERIC RIVERS

Low-category ARs
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POWERSPECTRA ATMOSPHERIC RIVERS
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OPEN QUESTIONS
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e Non-stationary event distribution, ; H HI
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time (t)

e Anti-correlation in event series

e Effect of normalisation in ED-ACF

e Including amplitude variability

e Alternative metrics (ARI-SPIKE,
Needleman-Wunsch distance, LCSS)

e Harmonics

200
000
800
2 600
o
4

(o]e) N
plele) ‘ ‘ i i ' T
(¢]

0.3 0.4 0.5 0.6 0.7

Marwan, Front. Appl. Math. Stat. 9, 2023 T g



TAKE HOME MESSAGE

Low-category ARs
e Simple power spectrum estimation for 102 (b
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ABSTRACT

The identification of cycles in periodic signals is a ubiquitous problem in time series analysis. Many real-world datasets only record a signal
as a series of discrete events or symbols. In some cases, only a sequence of (non-equidistant) times can be assessed. Many of these signals are
furthermore corrupted by noise and offer a limited number of samples, e.g., cardiac signals, astronomical light curves, stock market data, or
extreme weather events. We propose a novel method that provides a power spectral estimate for discrete data. The edit distance is a distance
measure that allows us to quantify similarities between non-equidistant event sequences of unequal lengths. However, its potential to quantify
the frequency content of discrete signals has so far remained unexplored. We define a measure of serial dependence based on the edit distance,
which can be transformed into a power spectral estimate (EDSPEC), analogous to the Wiener-Khinchin theorem for continuous signals. The
proposed method is applied to a variety of discrete paradigmatic signals representing random, correlated, chaotic, and periodic occurrences of
events. It is effective at detecting periodic cycles even in the presence of noise and for short event series. Finally, we apply the EDSPEC method
to a novel catalog of European atmospheric rivers (ARs). ARs are narrow filaments of extensive water vapor transport in the lower troposphere
and can cause hazardous extreme precipitation events. Using the EDSPEC method, we conduct the first spectral analysis of European ARs,
uncovering seasonal and multi-annual cycles along different spatial domains. The proposed method opens new research avenues in studying
of periodic discrete signals in complex real-world systems.
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Many dynamical processes exhibit characteristic periodic time
scales, which can be assessed by power spectral density estimation.
This is the usual and standard procedure of time series analysis,
where the data are, in general, equally sampled and follows a more
or less continuous nature. However, in specific applications, only
events are observable, which could be irregularly occurring activ-

be denoted by a set of ordered pairs {(;, x;)} of time ¢; with t,;; > ¢;
and corresponding data value x;; and with sampling index i. PSD
estimation becomes even more challenging, if instead only the time
points of the events are available (i.e., in contrast to the time series
definition above, we have only a set of time points {t;} which indicate
the presence of an event; time series analysis tools usually handle







