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1. Recurrences


2. Recurrence plots


• definition, structures, quantification, examples


3. Network analysis of recurrences


• definition, network measures, clustering, examples



Recurrences



Recurrence

• fundamental characteristic of 
many dynamical systems


• recurrences in real life: �

Milankovich cycles, weather 
after storm, El Niño 
phenomenon, heart beat after 
exertion, Maya calendar etc. 



Recurrence

• Anaxagoras, approx. 450 BC:�

perichoresis: chaotic circular movement



Recurrence

• Poincaré, 1890:�

“a system recurs infinitely many times 
as close as one wishes to its initial state”



Investigating Recurrence

• Poincaré map


• Recurrence time statistics


• First return map


• Recurrence plot


• Network analysis of recurrences



Recurrence Plots



Recurrence Plot

J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987
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Small-scale texture is visible in fig. 2 in the form of short lines parallel to the diagonal of 
the recurrence plot. Such lines would also be visible in fig. 1 and 4 at a larger magnification: 
they correspond to sequences (i, j ) ,  (i + 1, j + l), ..., (i + k ,  j + k )  such that the piece of 
trajectory x( j ) ,  x(j + l), . . . , x( j + k ) ,  is close to x ( i ) ,  x( i  + l), . . . , x ( i  + k ) .  The length of the 
lines is thus related to the inverse of the largest positive Liapunov exponent. If the x ( i )  were 
randomly chosen rather than coming from a dynamical system, there would be no such lines. 
Another type of texture, the checkerboard texture, is expected for the Lorenz system, 
corresponding to the fact that x ( i )  moves on a spiral sometimes around one, sometimes 

Fig. 4. - The experiment analysed in [ Z ] .  A total of 40000 data points has been used, the time is 8000 s. 
The embedding dimension is 9. 

around the other of the two symmetric fixed points of the system. The checkerboard 
structure, however, is only barely visible in fig. 2 ,  but a careful analysis shows that the 
diagonal black spots fall into two mutually exclusive groups having again black spots on the 
intersection of the horizontal and vertical lines. In fact, the striking events visible in fig. 2 
are  those when x(i)  spirals for a long time around one of the fixed points. The pattern thus 
created extends to large scales, and can no longer quite be called a texture. 
TG conclude, we wish to  stress that the recurrence plots are rather easily obtained aids 

for the diagnosis of dynamical systems. They display important and easily interpretable 
information about time scales which are otherwise rather inaccessible. 

* * *  
This work has been supported by CAPES, Brazil (SOK), and the Fonds National Suisse. 

Recurrence Plot

Eckmann et al, EPL, 1987:
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Recurrence Plot

Eckmann et al, EPL, 1987:
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Certainly, Eckmann, Kamphorst and Ruelle might well be surprised by the influence and
directions their original contribution has spawned. It is hoped that these examples can pro-
vide inspiration for further development.
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Greetings from J.-P. Eckmann, S.O. Kamphorst, D. Ruelle

The editors of this volume have asked us to add a few words on the 20th anniversary of our
paper. It is of course rewarding to discover that a small paper has, after a dormant period, led to
an active field, with many ramifications we certainly had not anticipated. One can wonder what
exactly is responsible for this development. We think that it is the interface with the human
visual system, which allows for a quick analysis of phenomena which are hard to quantify with
purely algorithmic methods, in particular in situations where the result is not clear or is not
being anticipated. Its strength is also that it is not tied to any particular application, as can be
seen from the many papers in this volume, whether they concern transients, hidden regularities,
covering finance, biology, and many other fields. In problems of turbulence, chaos, and the like,
where numbers are easily produced, one has often the feeling that it is their intrinsic nature and
not numbers which are of interest, and that one understands complex behavior only once one
“sees” it. In this sense, scatter diagrams are a typical example of these more general aspects.
We hope and expect that the researchers will find many more applications and indicators in
the future.

Eckmann et al, EPJST, 2008:
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Recurrence Plot

• to visualise the phase space trajectory by its recurrences


• recurrence matrix:

‣ binary

‣ symmetric


•

J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987

N. Marwan et al., Physics Reports, 438, 2007

1 1 0 0 1

1 1 1 0 1

0 1 1 0 0

0 0 0 1 1

1 1 0 1 1

Ri,j = 



Recurrence Plot Typology

homogeneous periodic

drifty disrupted
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Recurrence Quantification

• number of lines of exactly length l


‣ histogram P(l)

length l

J. P. Zbilut & C. L. Webber Jr., Phys. Lett. A 171, 1992

N. Marwan et al., Phys. Rev. E 66,  2002



• Recurrence rate


• Determinism

DET =
∑N

l=lmin
l P(l)

∑N

l=1 l P(l)

Probability that recurrences further recur

Probability that any state recurs

Recurrence Quantification

RR =
1

N2

N

Â
i, j=1

Ri, j



• sliding window: detection of dynamical transitions

Time Depending Analysis

Time series
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Dynamics of Oxygen Crises in a Lake
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Facchini et al., Ecological Modelling, 203, 2007



Dynamics of Oxygen Crises in a Lake
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Recurrence Plot

• Transition detection


• Differentiate dynamics


• Finding time scales


• Interrelation detection


• Synchronisation analysis


• Surrogates


• Recurrence time statistics


• etc. Time
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N. Marwan et al., Physics Reports, 438, 2007



Complex Networks



Complex Networks

• link matrix (undirected, 
unweighted network):


‣ binary

‣ symmetric

0 1 0 0 1

1 0 1 0 1

0 1 0 0 0

0 0 0 0 1

1 1 0 1 0

Ai,j = 



Complex Networks

• link matrix (undirected, 
unweighted network):


‣ binary

‣ symmetric

0 1 0 0 1

1 0 1 0 1

0 1 0 0 0

0 0 0 0 1

1 1 0 1 0

Ai,j = 

‣ link matrix: similar to recurrence plot



Time Series Analysis �
using Complex Networks

• Link matrix = recurrence 
matrix of time series


‣ Nodes: states in phase space


‣ Links: local neighbours of 
states (i.e. recurrence)

Marwan et al., Phys. Lett. A 373, 2009

• Path: connected 
neighbourhoods



Time Series Analysis �
using Complex Networks

• Link matrix = recurrence 
matrix of time series


‣ Nodes: states in phase space


‣ Links: local neighbours of 
states (i.e. recurrence)

Marwan et al., Phys. Lett. A 373, 2009

• Path: connected 
neighbourhoods



Time Series Analysis �
using Complex Networks

• Link matrix = recurrence 
matrix of time series


‣ Nodes: states in phase space


‣ Links: local neighbours of 
states (i.e. recurrence)

Marwan et al., Phys. Lett. A 373, 2009

• Path: connected 
neighbourhoods



• Complex network measures applied 
to recurrence plot

‣ measures of complexity 

explaining topological properties 
of complex systems


‣ local and global measures


• „recurrence network“

Time Series Analysis �
using Complex Networks

Marwan et al., Phys. Lett. A 373, 2009

Donner et al., IJBC 21, 2011



Scale Network measure Phase space

Local
link density global recurrence rate

degree centrality local recurrence rate

Intermediate

clustering coefficient invariant objects, local dimension

local degree anomaly local heterogeneity of phase space density

assortativity continuity of phase space density

matching index twinness

Global

average path length mean phase space separation

network diameter phase space diameter

closeness centrality local centeredness in phase space

betweenness centrality local attractor fractionation

global transitivity/ clustering regular dynamics

motif distribution dynamical classification



Clustering Coefficient



Clustering Coefficient



Clustering Coefficient



Clustering Coefficient

‣ probability that neighbours of a node are also connected



Clustering Coefficient

Cv =
∑i, j Av,i Ai, j Aj,v

kv(kv − 1)

‣ probability that neighbours of a node are also connected



Clustering Coefficient in Phase Space

x(t) x(t)

C ≈ 1 C < 1

Regular/ periodic Diverging/ chaotic



Clustering Coefficient in Phase Space

x(t) x(t)

‣ clustering coefficient: regularity of dynamics, system dimension

C ≈ 1 C < 1

Regular/ periodic Diverging/ chaotic



Example: Logistic Map

• Logistic map:

xi+1 = a xi(1 − xi)
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Summary

• Complex networks from time series


• Identification and classification of dynamics (regular – chaotic)


• Detection of transitions in dynamics (bifurcations, structural 
discontinuities)


• Complementary analysis to traditional recurrence analysis



Alternative Approaches

• Visibility graph


• Cycle network


• Correlation network


• Transition network
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