

Norbert Marwan

Jonathan Donges, Reik Donner, Yong Zou, Jürgen Kurths

Complex network analysis of recurrences in phase space

Outline

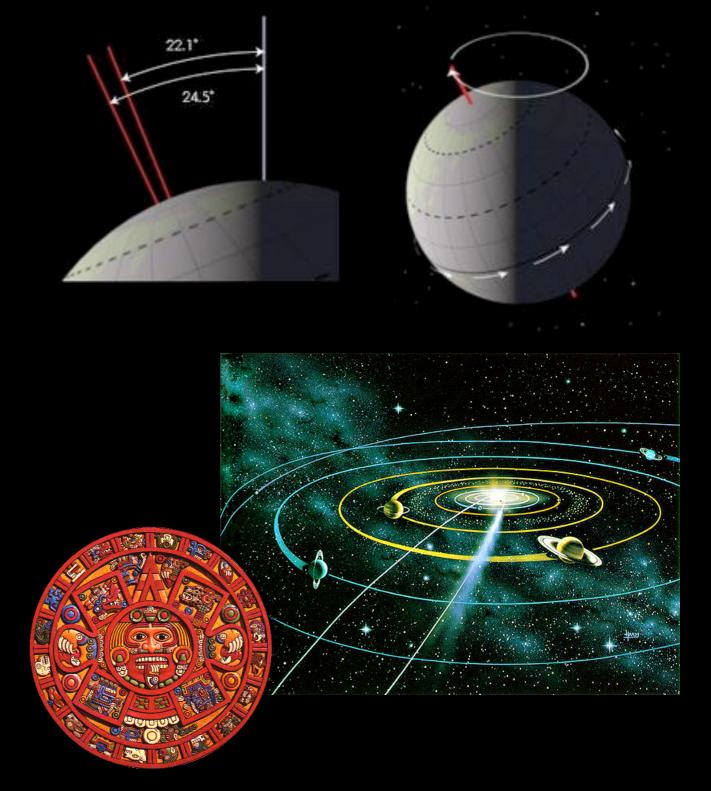
- 1. Recurrences
- 2. Recurrence plots
 - definition, structures, quantification, examples
- 3. Network analysis of recurrences
 - definition, network measures, clustering, examples

Recurrences

Recurrence

- fundamental characteristic of many dynamical systems
- recurrences in real life:
 Milankovich cycles, weather

after storm, El Niño phenomenon, heart beat after exertion, Maya calendar etc.



Recurrence

Anaxagoras, approx. 450 BC:
 perichoresis: chaotic circular movement

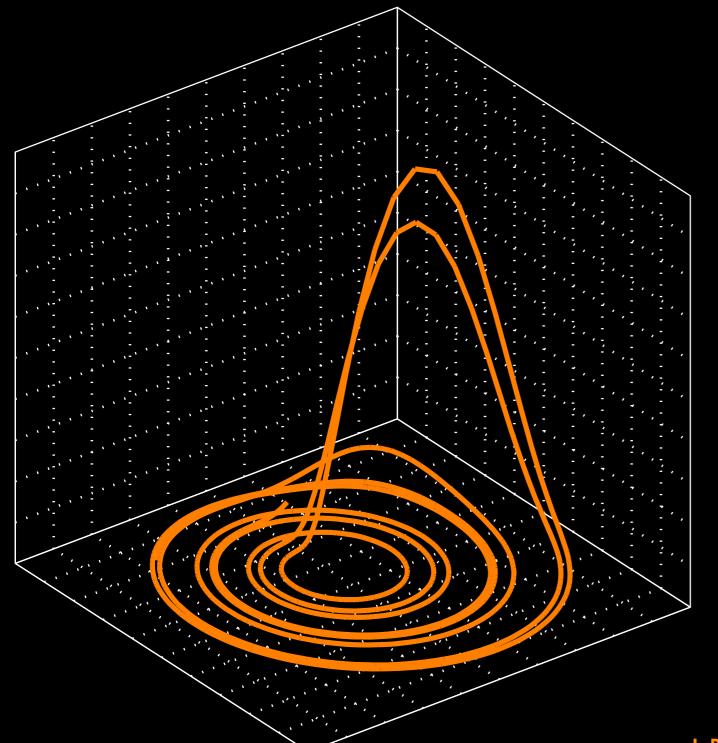
Recurrence

• Poincaré, 1890:

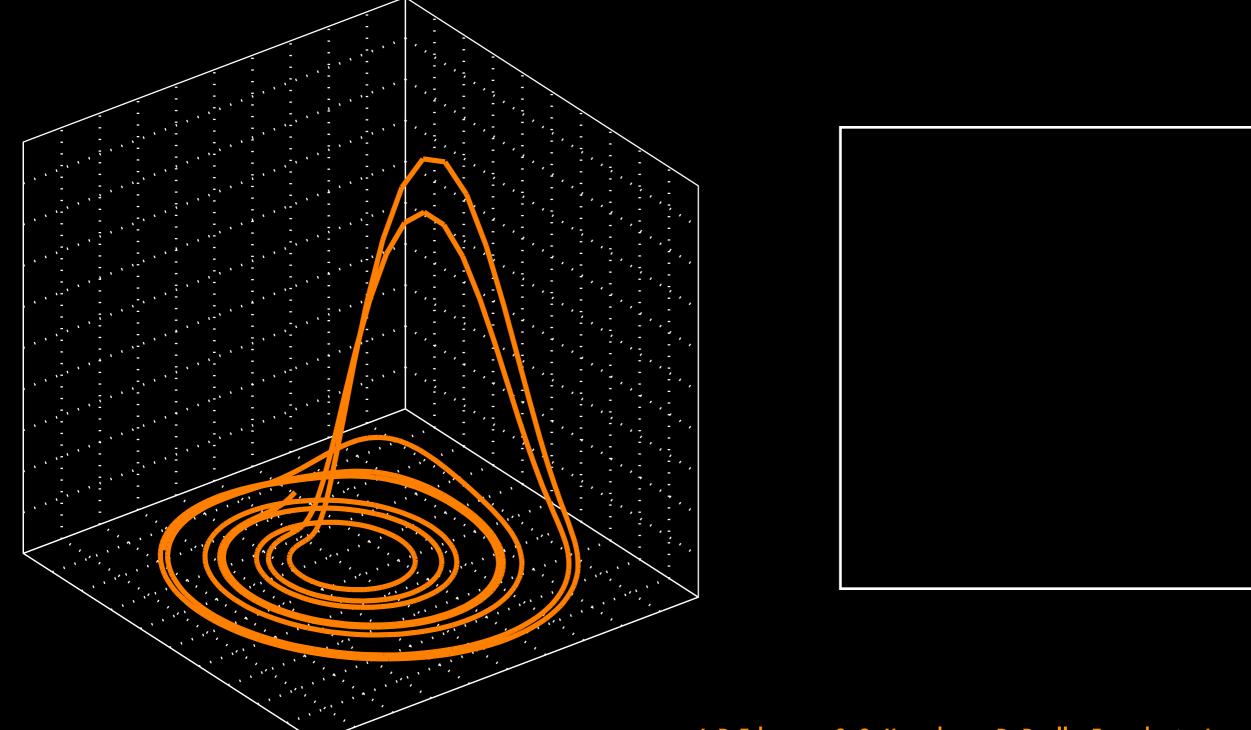
"a system recurs infinitely many times as close as one wishes to its initial state"

Investigating Recurrence

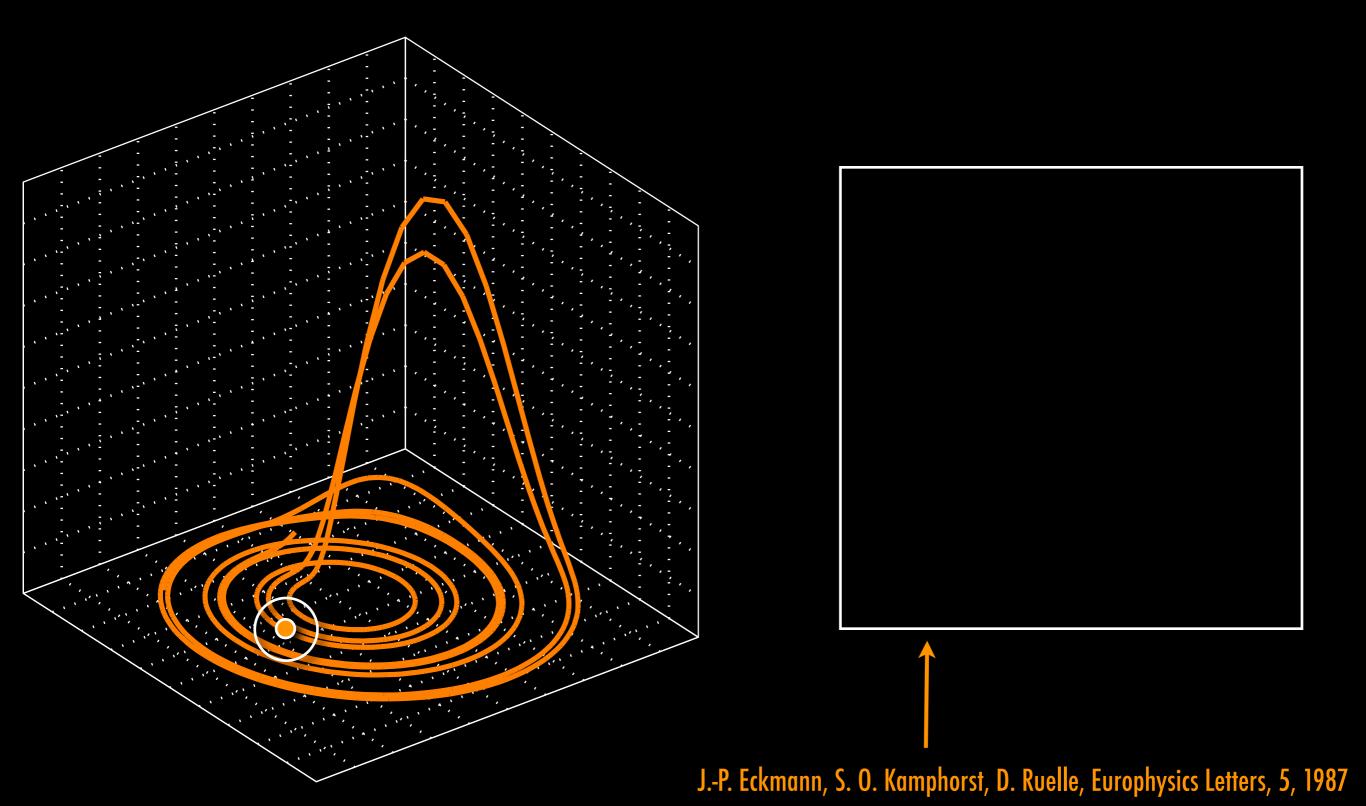
- Poincaré map
- Recurrence time statistics
- First return map
- Recurrence plot
- Network analysis of recurrences

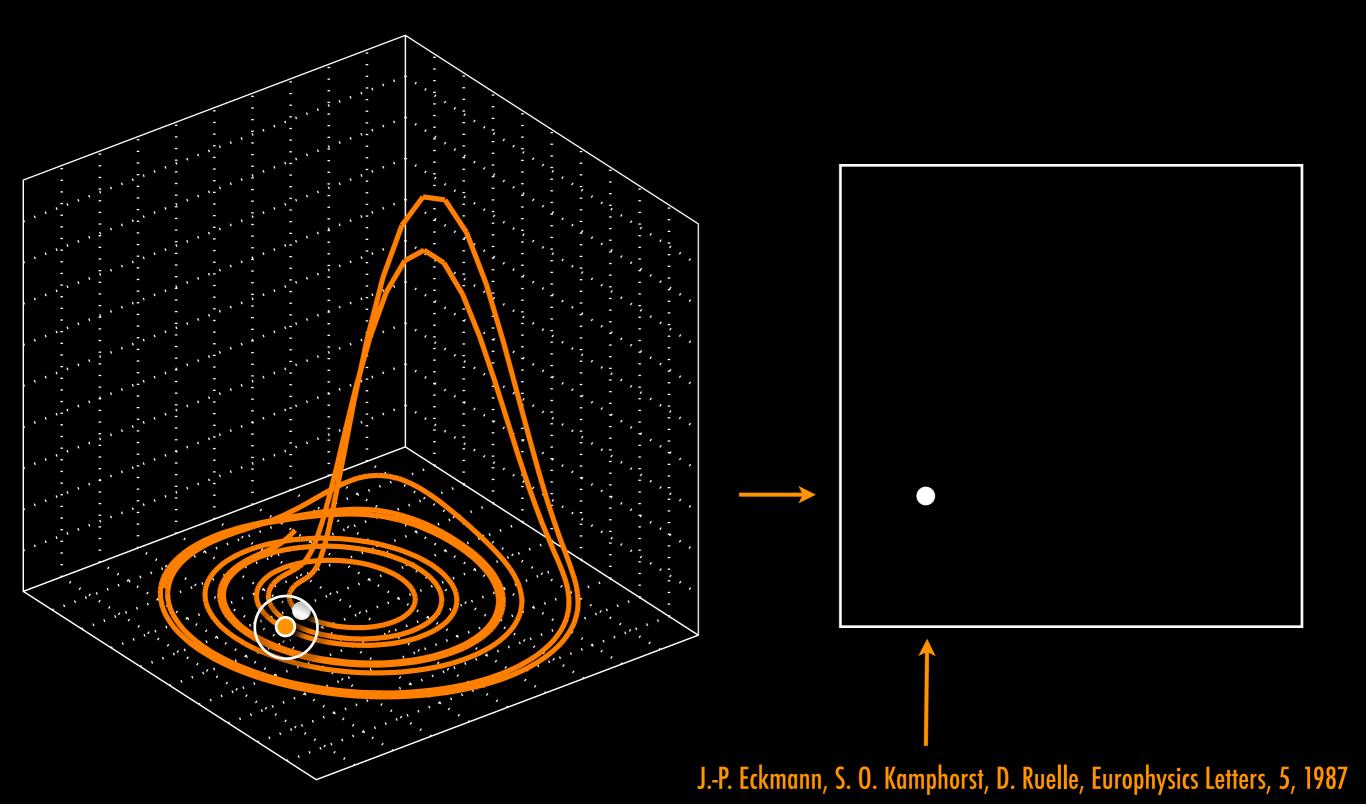


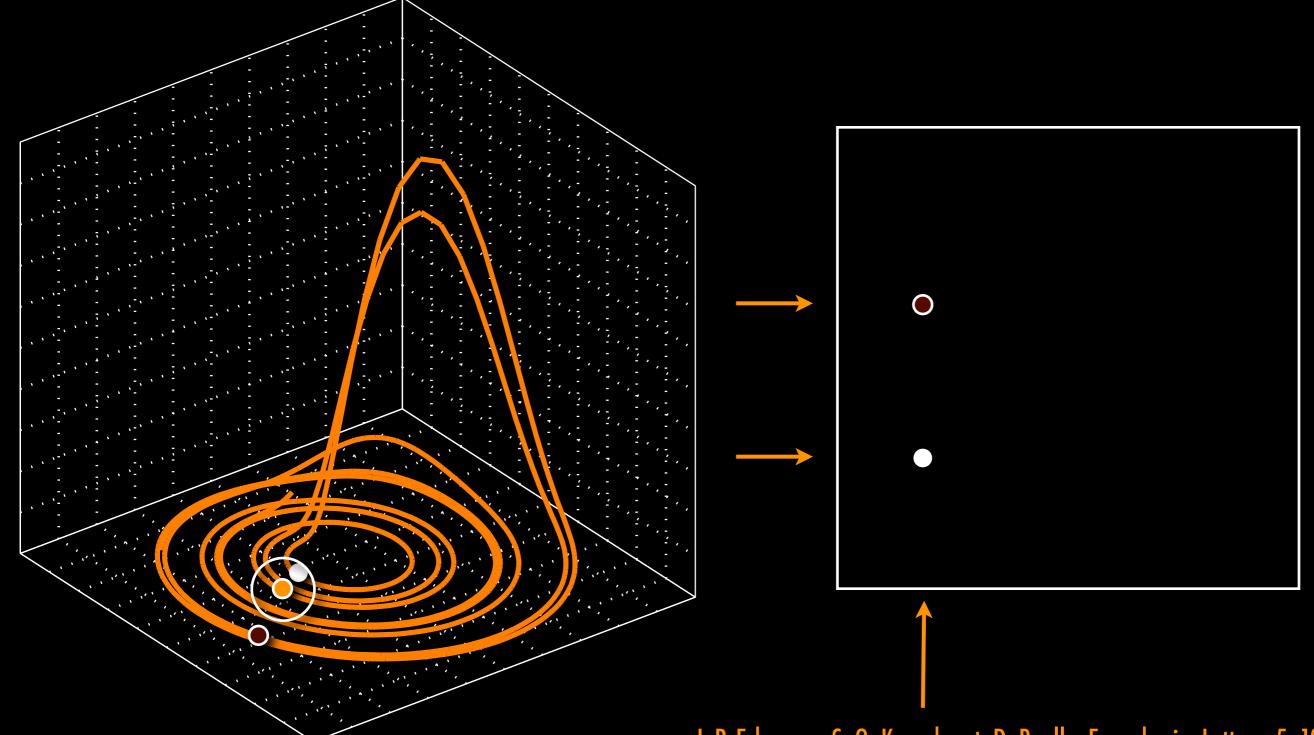
J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987



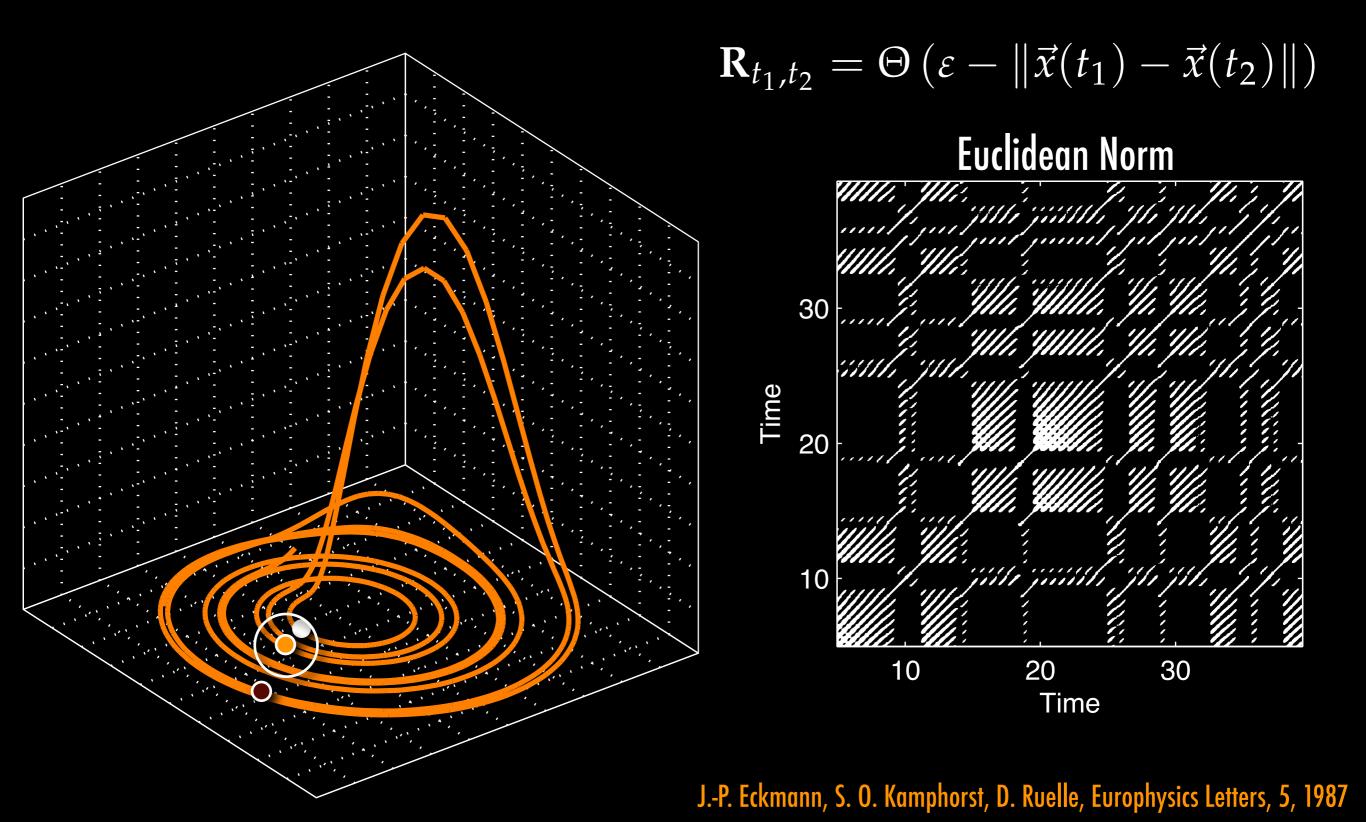
J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987







J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987



Eckmann et al, EPL, 1987:

To conclude, we wish to stress that the recurrence plots are rather easily obtained aids for the diagnosis of dynamical systems. They display important and easily interpretable information about time scales which are otherwise rather inaccessible.

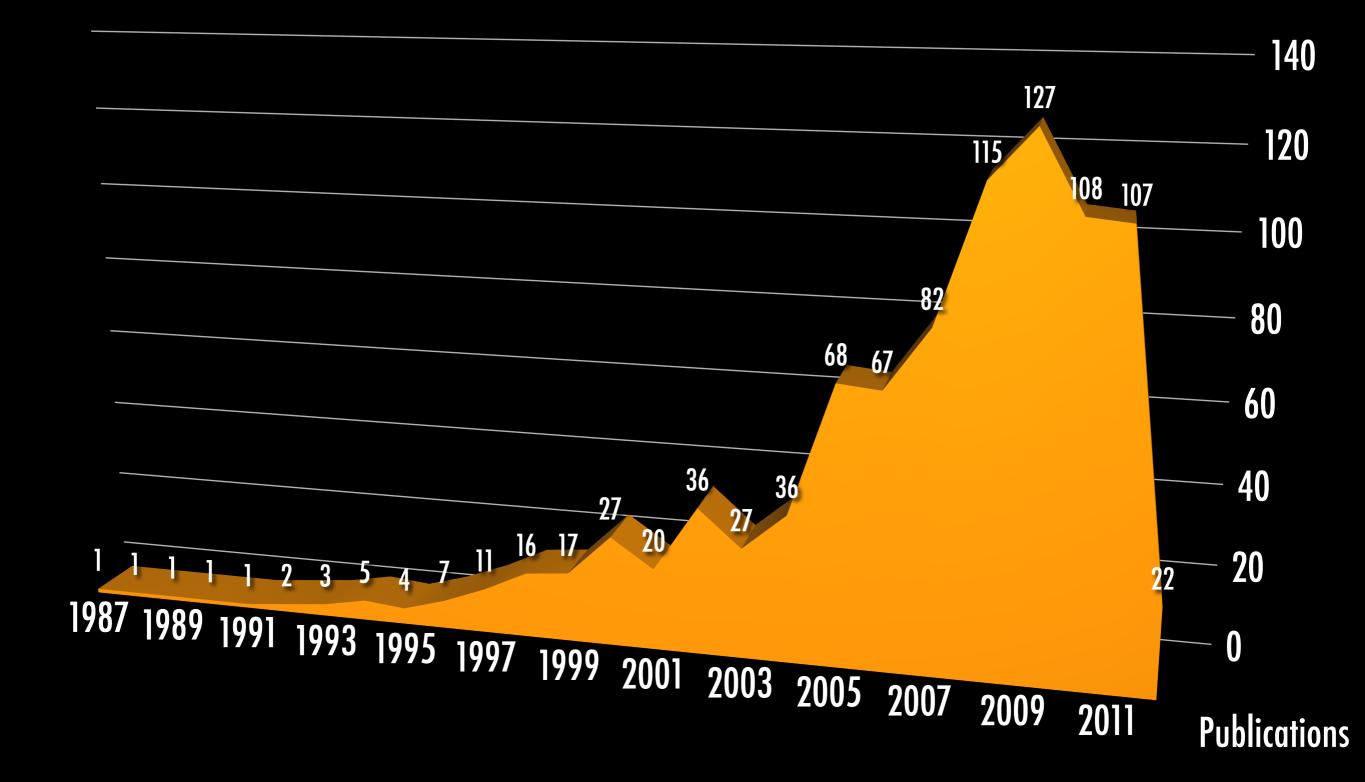
Eckmann et al, EPL, 1987:

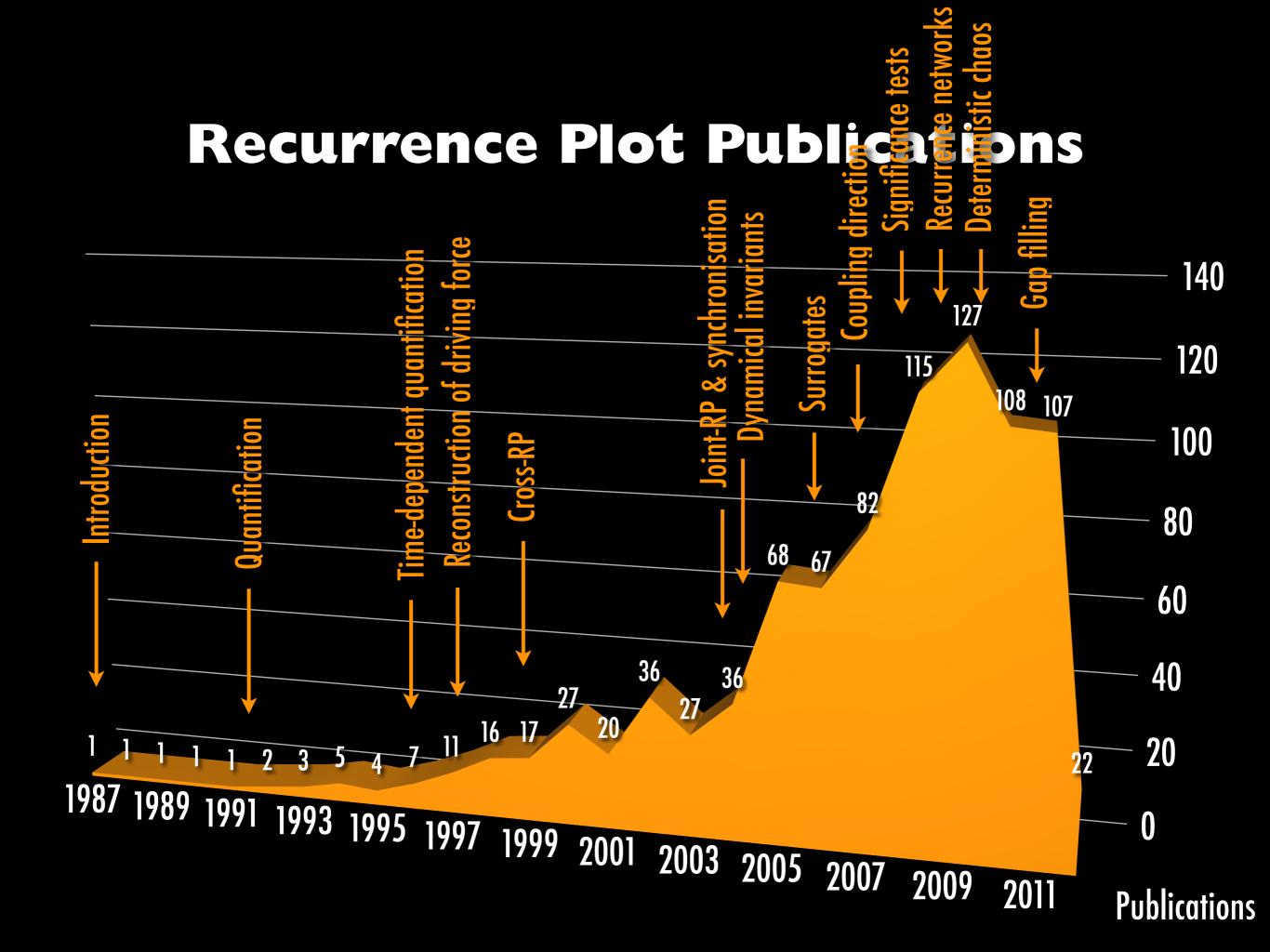
To conclude, we wish to stress that the recurrence plots are rather easily obtained aids for the diagnosis of dynamical systems. They display important and easily interpretable information about time scales which are otherwise rather inaccessible.

Eckmann et al, EPJST, 2008:

paper. It is of course rewarding to discover that a small paper has, after a dormant period, led to an active field, with many ramifications we certainly had not anticipated. One can wonder what

Recurrence Plot Publications





 $R_{i,i} =$

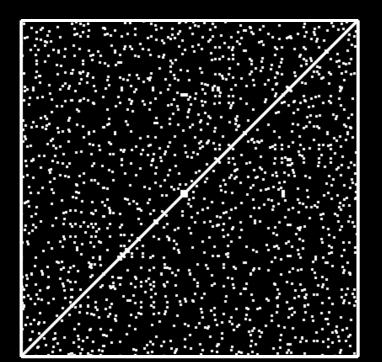
• to visualise the phase space trajectory by its recurrences

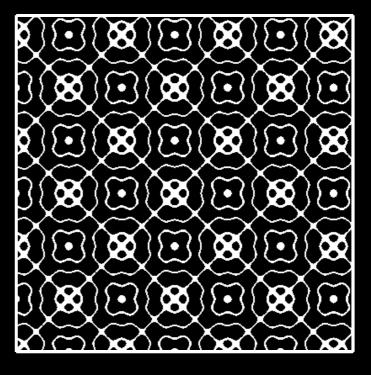
- recurrence matrix:
 - ▶ binary
 - ► symmetric

I	I	0	0	I
I	I	I	0	I
0		I	0	0
0	0	0	I	I
I	1	0	I	I

J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Europhysics Letters, 5, 1987 N. Marwan et al., Physics Reports, 438, 2007

Recurrence Plot Typology

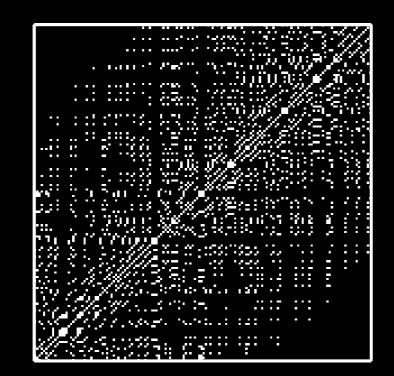


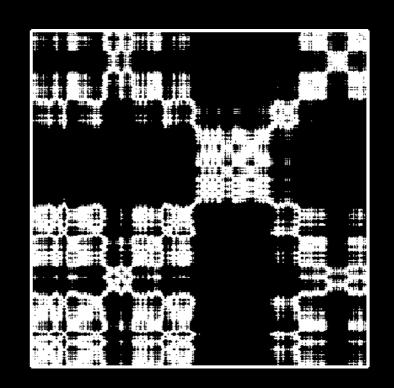


periodic

homogeneous

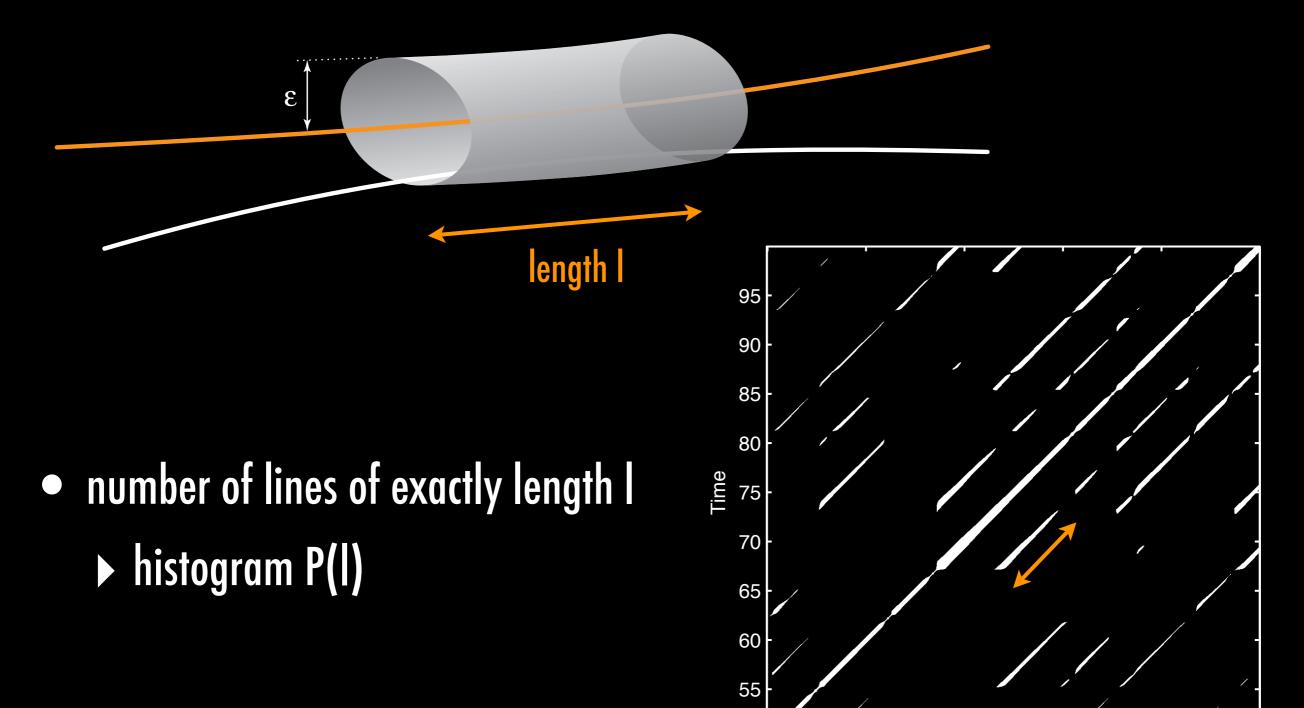
drifty





disrupted

Recurrence Quantification



50 50

60

70

Time

80

90

J. P. Zbilut & C. L. Webber Jr., Phys. Lett. A 171, 1992 N. Marwan et al., Phys. Rev. E 66, 2002

Recurrence Quantification

• Recurrence rate

$$RR = \frac{1}{N^2} \sum_{i,j=1}^{N} R_{i,j}$$

Probability that any state recurs

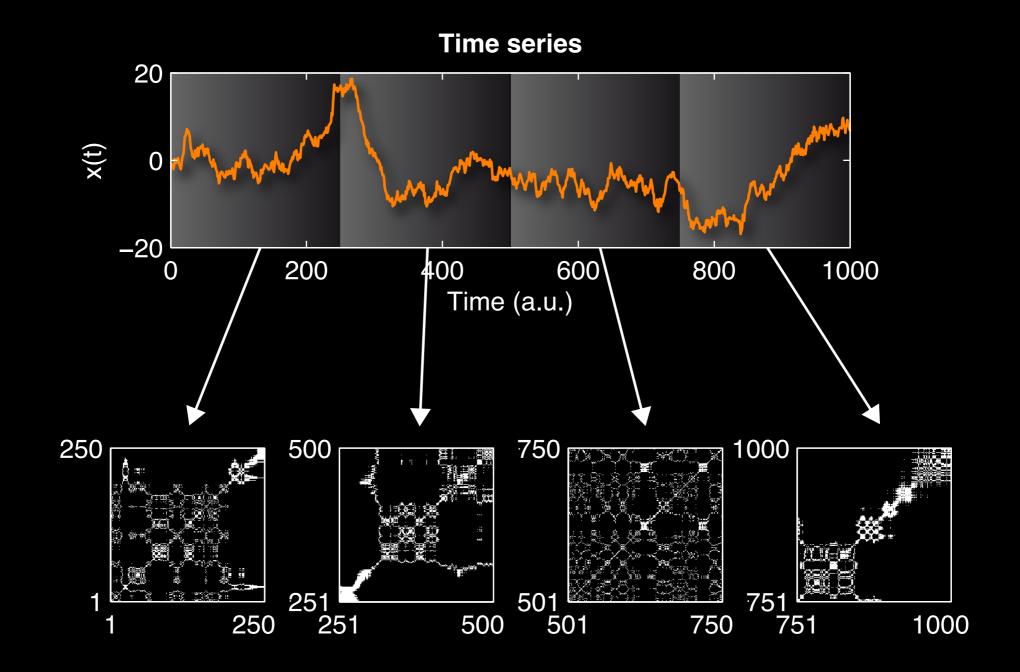
• Determinism

$$DET = \frac{\sum_{l=l_{\min}}^{N} l P(l)}{\sum_{l=1}^{N} l P(l)}$$

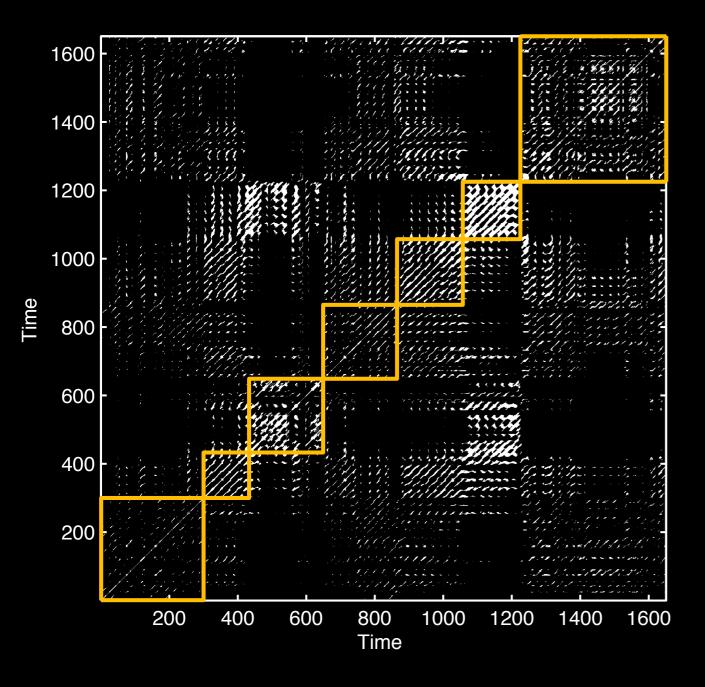
Probability that recurrences further recur

Time Depending Analysis

• sliding window: detection of dynamical transitions

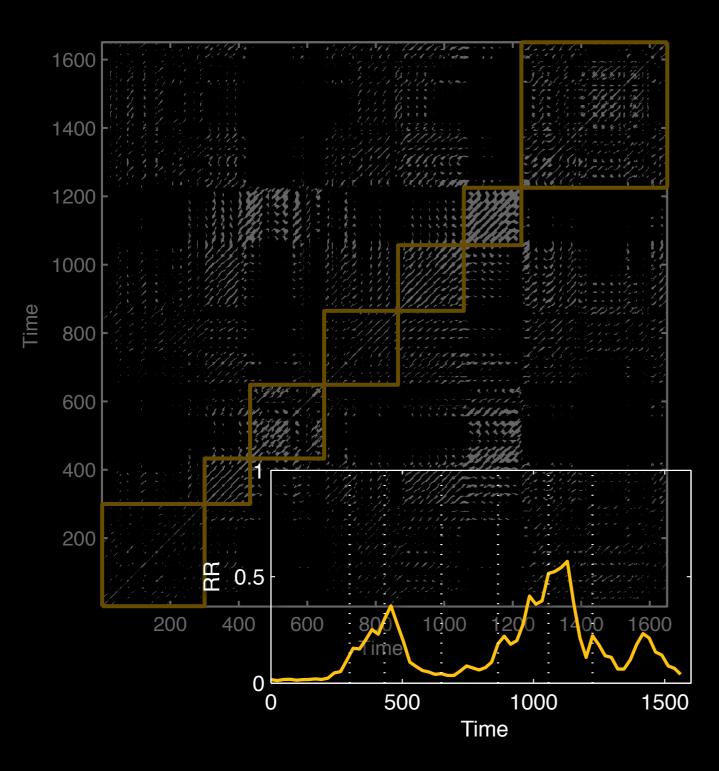


Dynamics of Oxygen Crises in a Lake

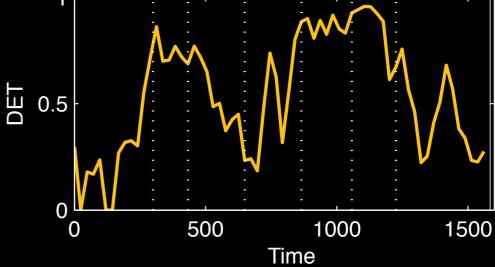


Facchini et al., Ecological Modelling, 203, 2007

Dynamics of Oxygen Crises in a Lake

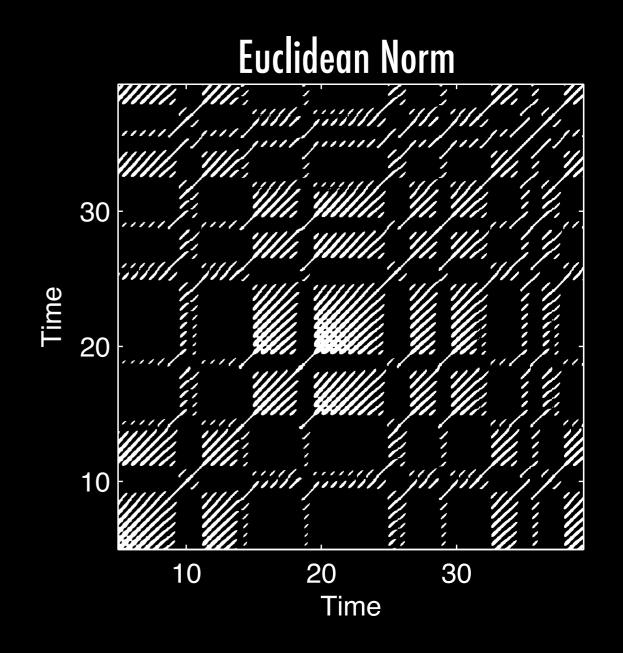






Facchini et al., Ecological Modelling, 203, 2007

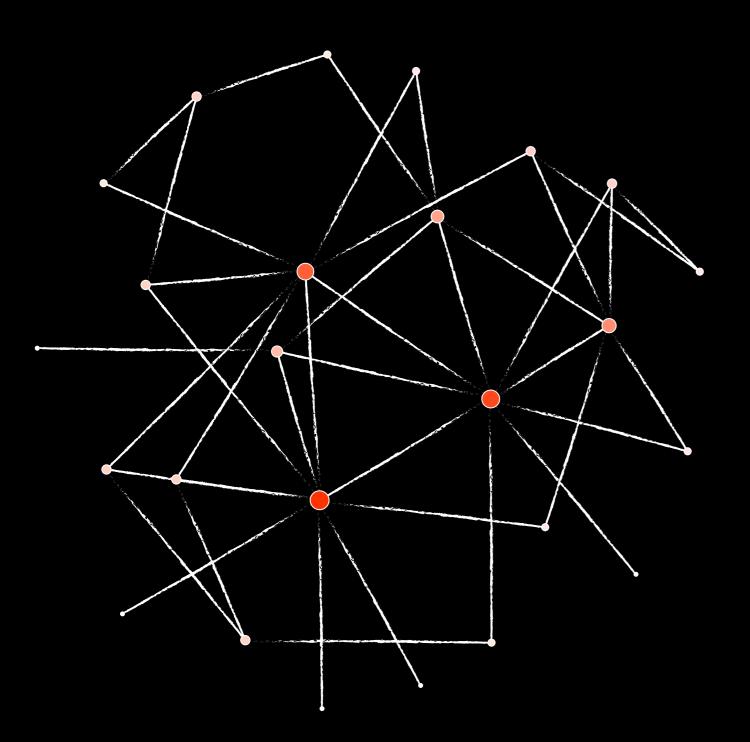
- Transition detection
- Differentiate dynamics
- Finding time scales
- Interrelation detection
- Synchronisation analysis
- Surrogates
- Recurrence time statistics
- etc.



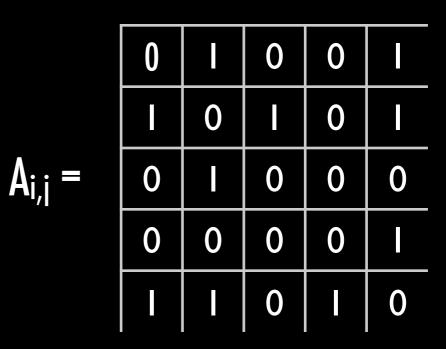
N. Marwan et al., Physics Reports, 438, 2007

Complex Networks

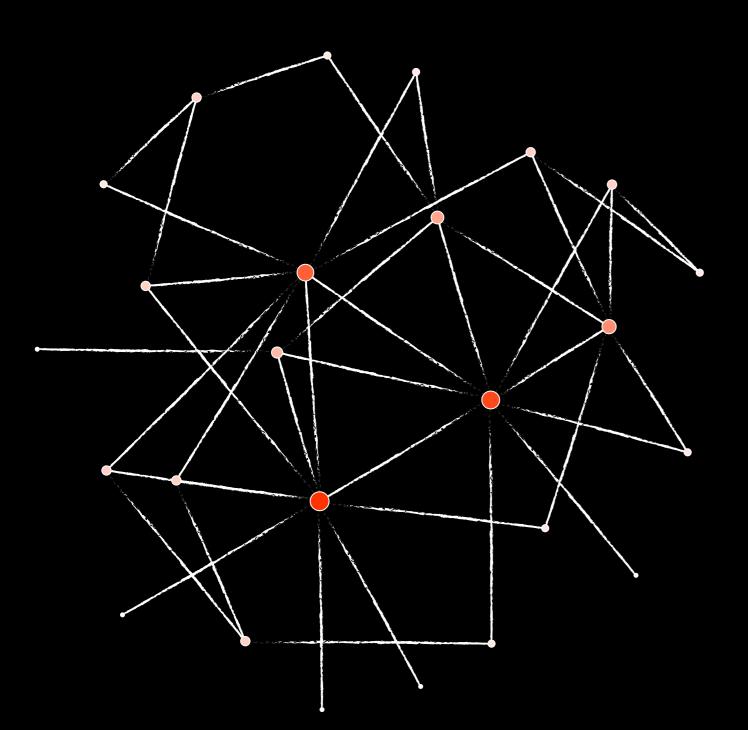
Complex Networks



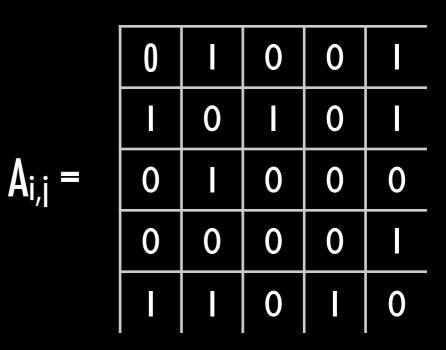
- link matrix (undirected, unweighted network):
 - ▶ binary
 - ► symmetric



Complex Networks

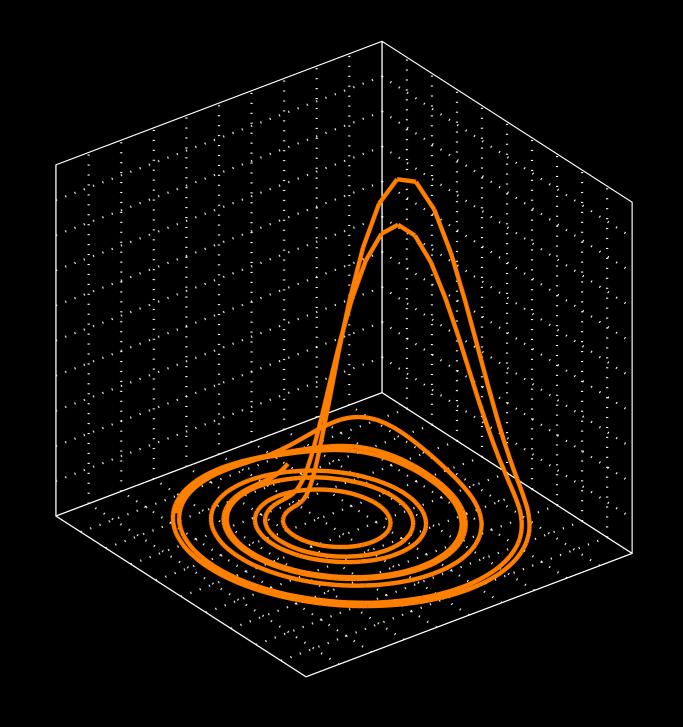


- link matrix (undirected, unweighted network):
 - ▶ binary
 - ► symmetric



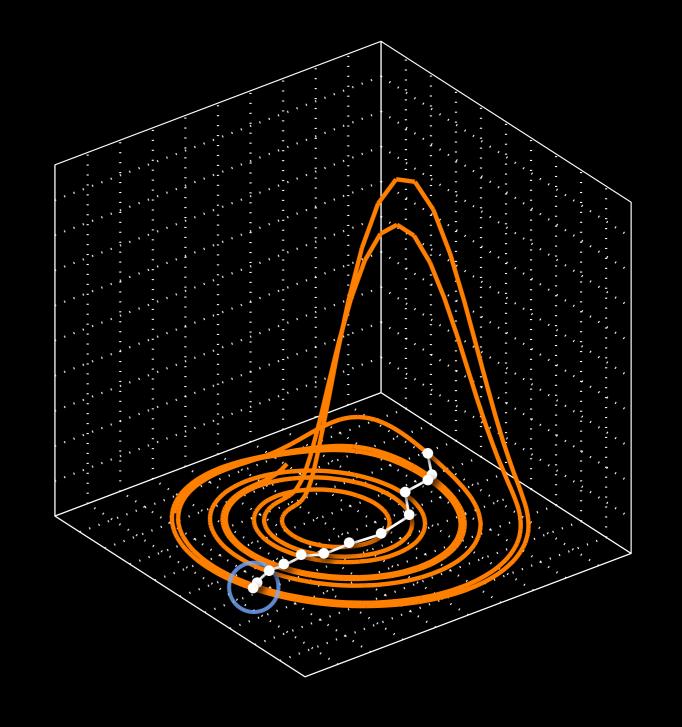
Ink matrix: similar to recurrence plot

- Link matrix = recurrence matrix of time series
 - Nodes: states in phase space
 - Links: local neighbours of states (i.e. recurrence)
- Path: connected neighbourhoods



Marwan et al., Phys. Lett. A 373, 2009

- Link matrix = recurrence matrix of time series
 - Nodes: states in phase space
 - Links: local neighbours of states (i.e. recurrence)
- Path: connected neighbourhoods



- Link matrix = recurrence matrix of time series
 - Nodes: states in phase space
 - Links: local neighbours of states (i.e. recurrence)
- Path: connected neighbourhoods



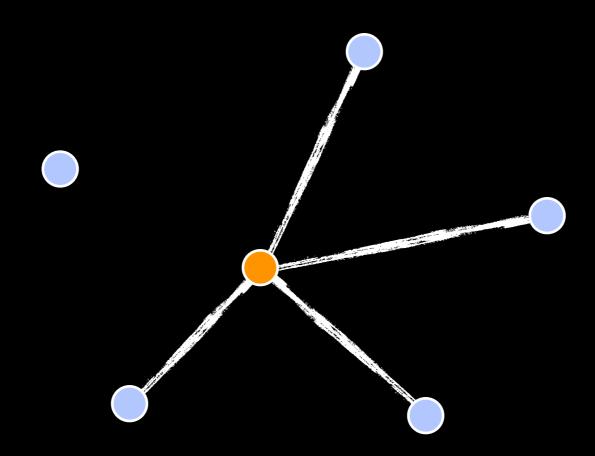
Marwan et al., Phys. Lett. A 373, 2009

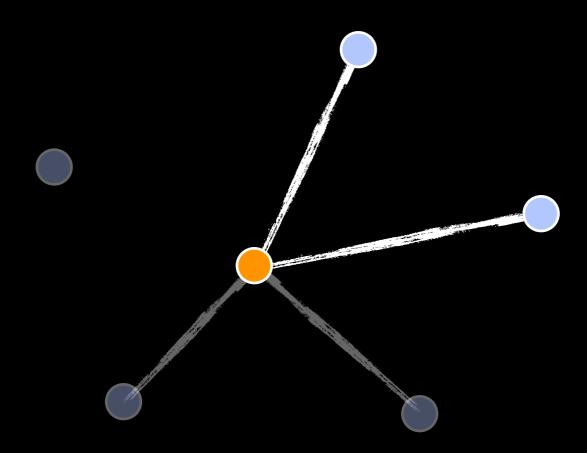
- Complex network measures applied to recurrence plot
 - measures of complexity explaining topological properties of complex systems
 - Iocal and global measures
- recurrence network

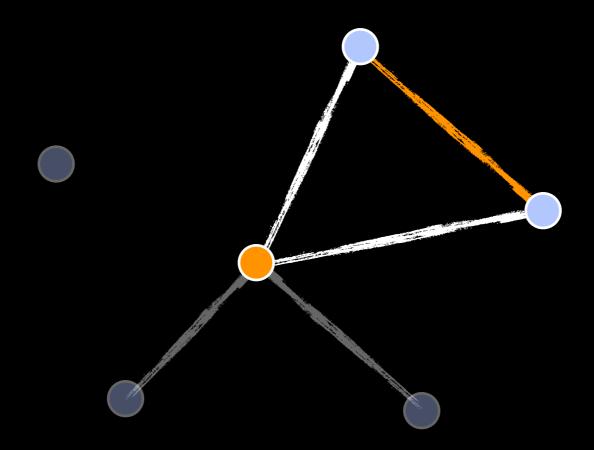
Marwan et al., Phys. Lett. A 373, 2009 Donner et al., IJBC 21, 2011

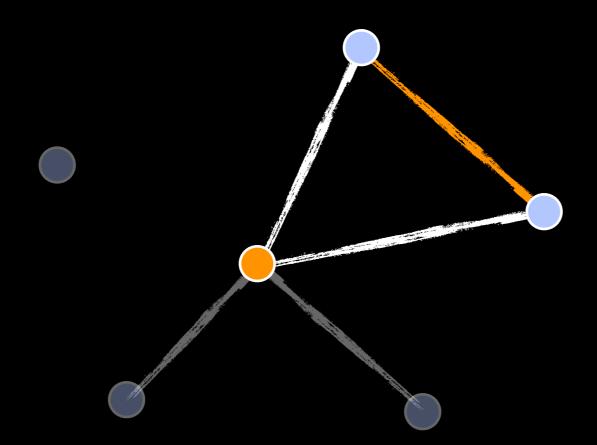
Scale	Network measure	Phase space	
Local	link density	global recurrence rate	
	degree centrality	local recurrence rate	
Intermediate	clustering coefficient	invariant objects, local dimension	
	local degree anomaly	local heterogeneity of phase space density	
	assortativity	continuity of phase space density	
	matching index	twinness	
Global	average path length	mean phase space separation	
	network diameter	phase space diameter	
	closeness centrality	local centeredness in phase space	
	betweenness centrality	local attractor fractionation	
	global transitivity/ clustering	regular dynamics	
	motif distribution	dynamical classification	

Clustering Coefficient

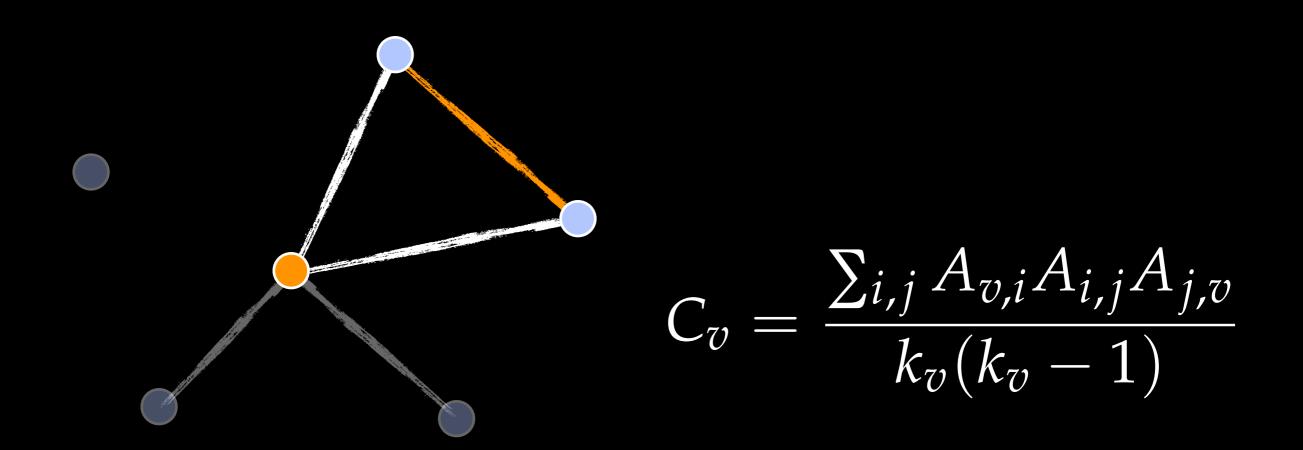








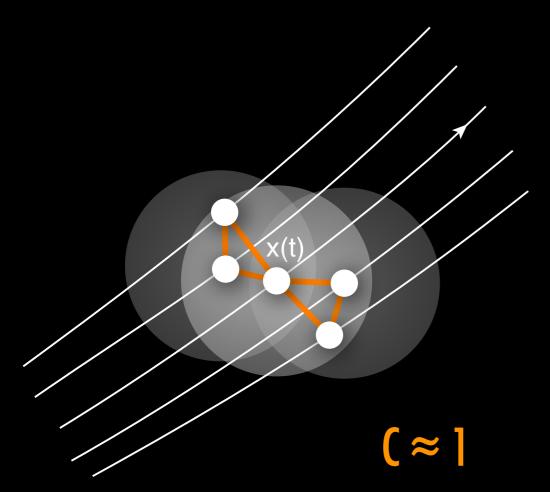
probability that neighbours of a node are also connected

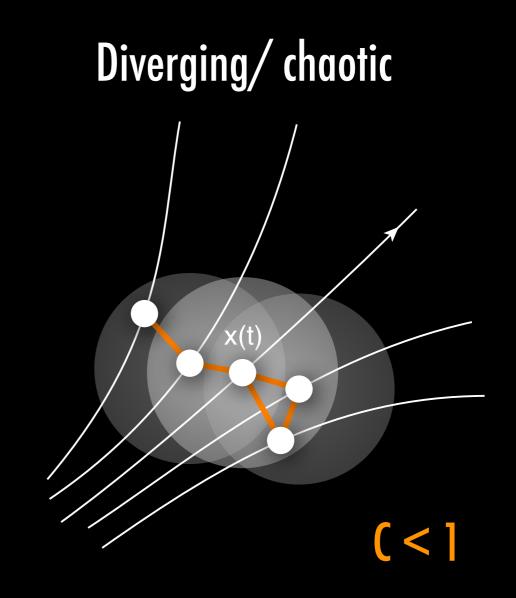


probability that neighbours of a node are also connected

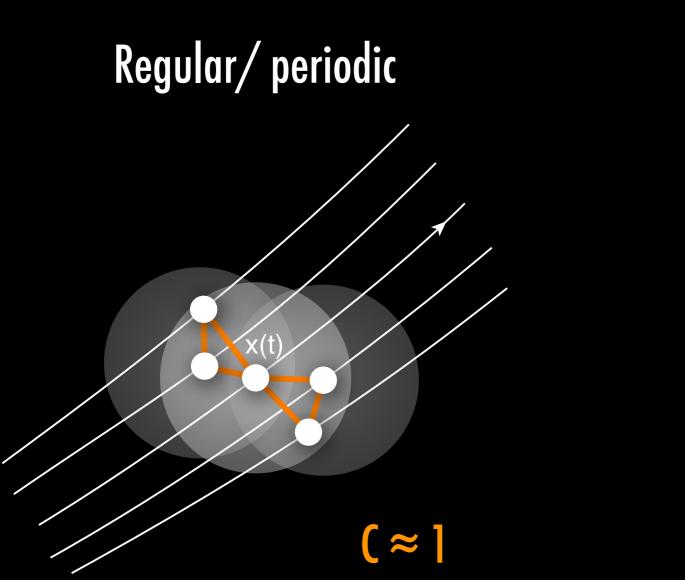
Clustering Coefficient in Phase Space

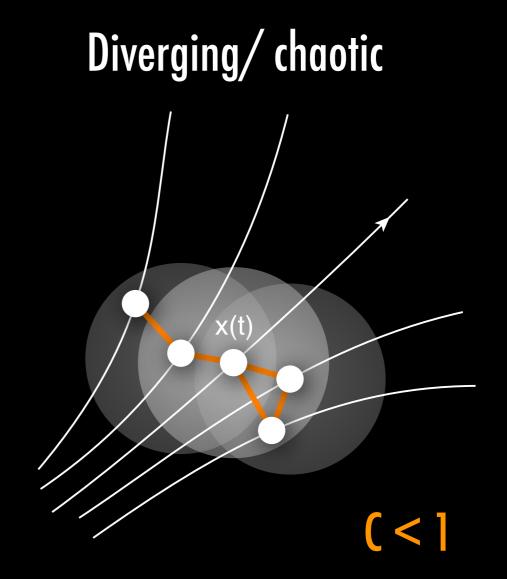
Regular/ periodic





Clustering Coefficient in Phase Space

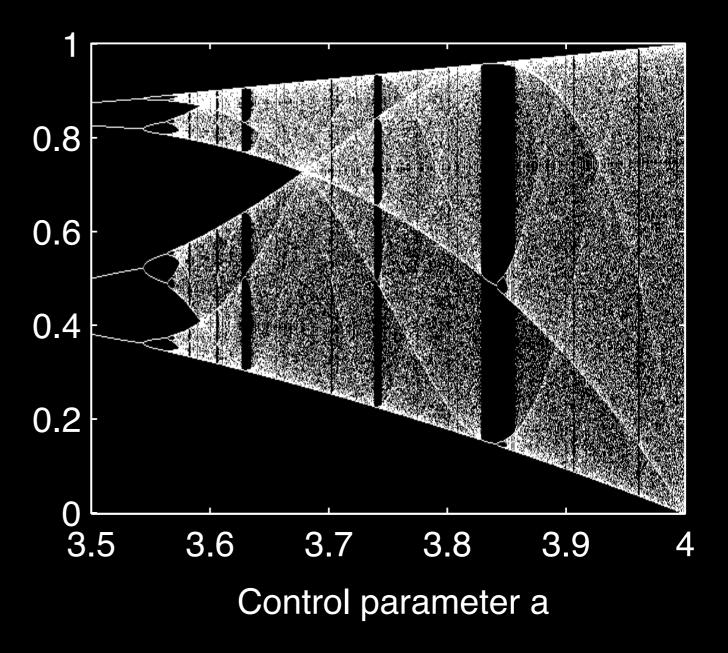


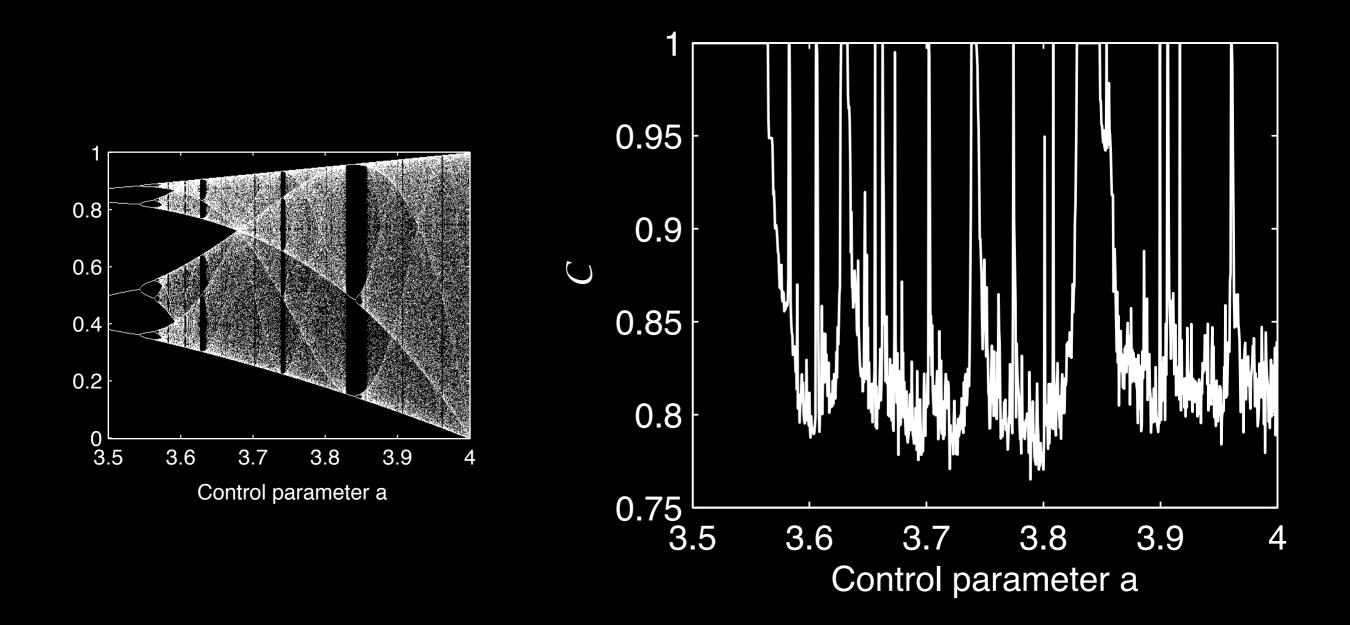


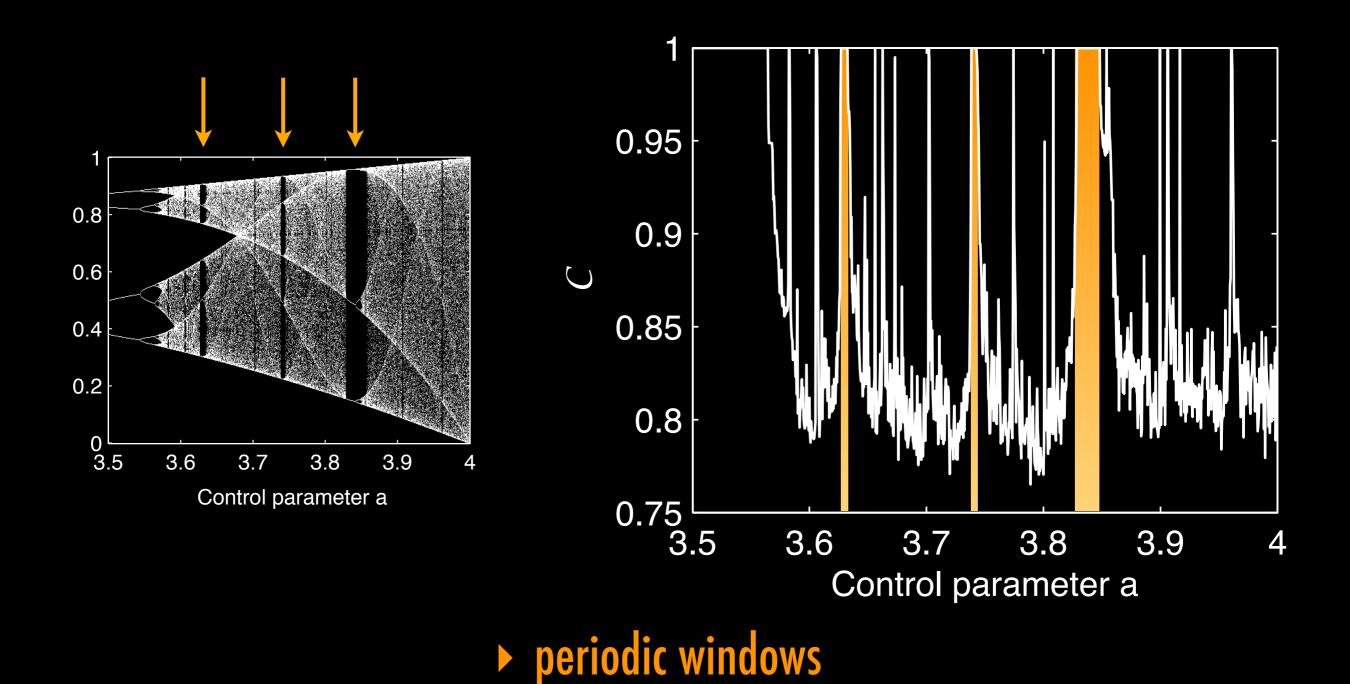
clustering coefficient: regularity of dynamics, system dimension

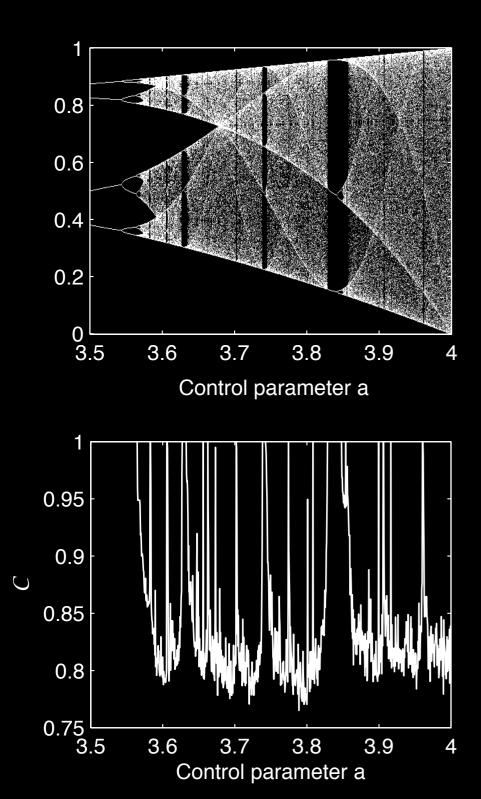
• Logistic map:

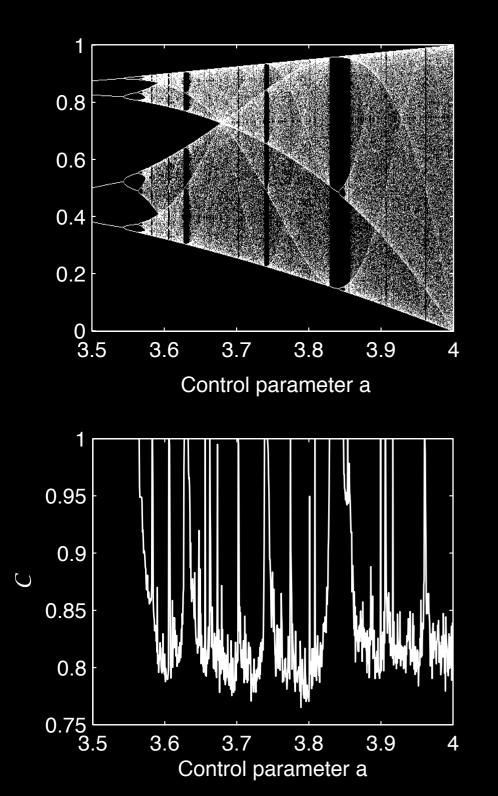
$$x_{i+1} = a x_i (1 - x_i)$$

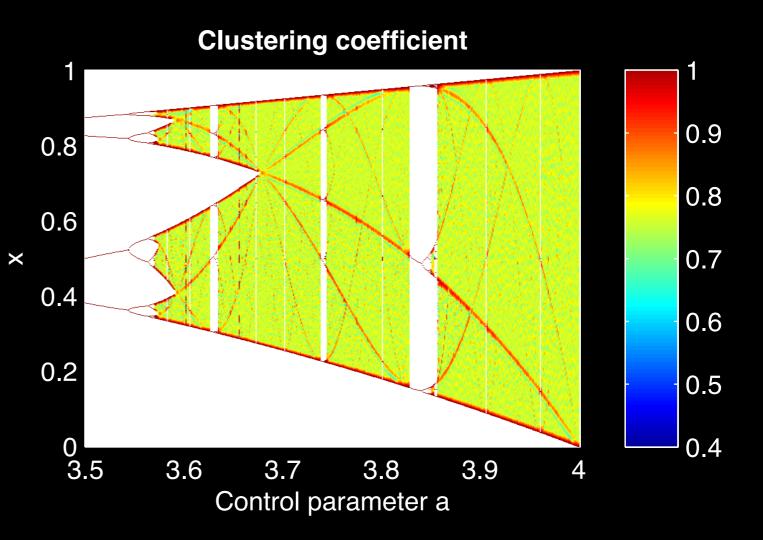




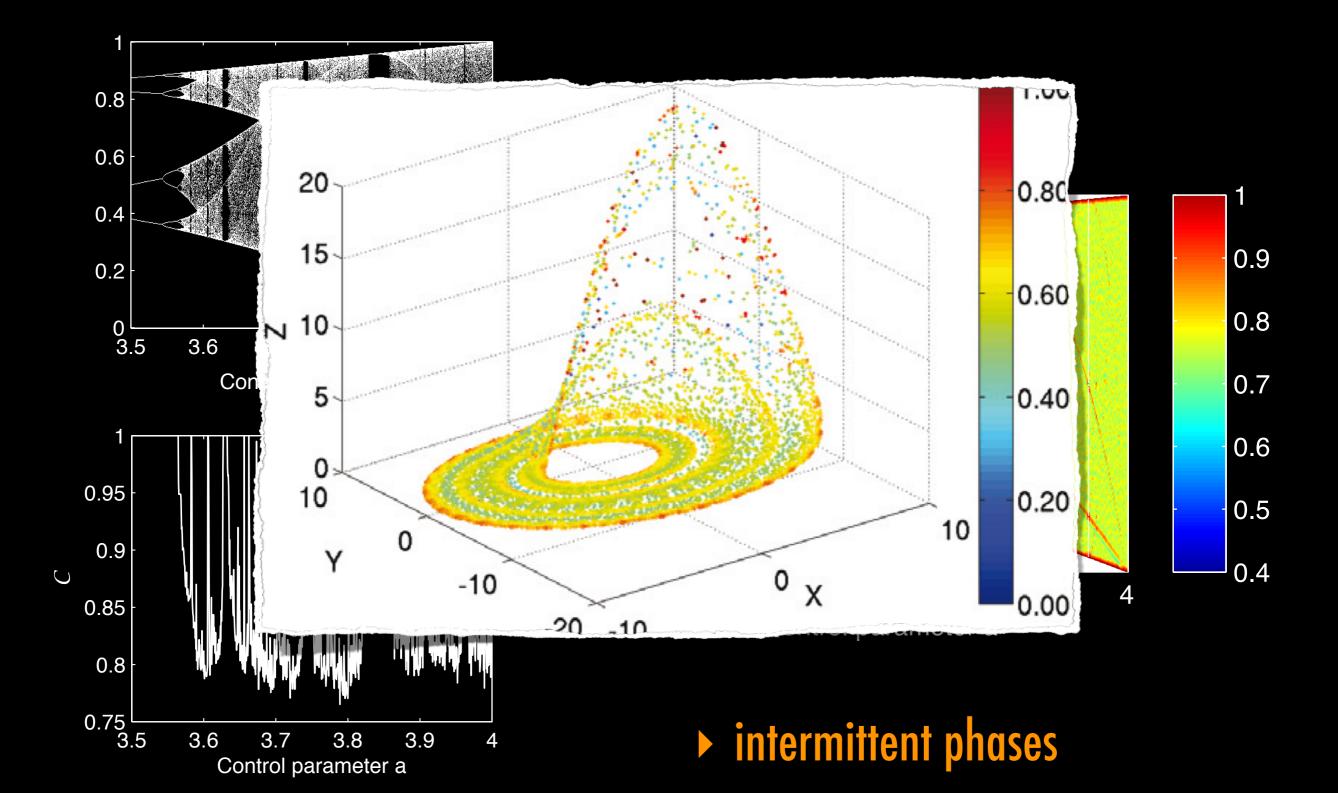


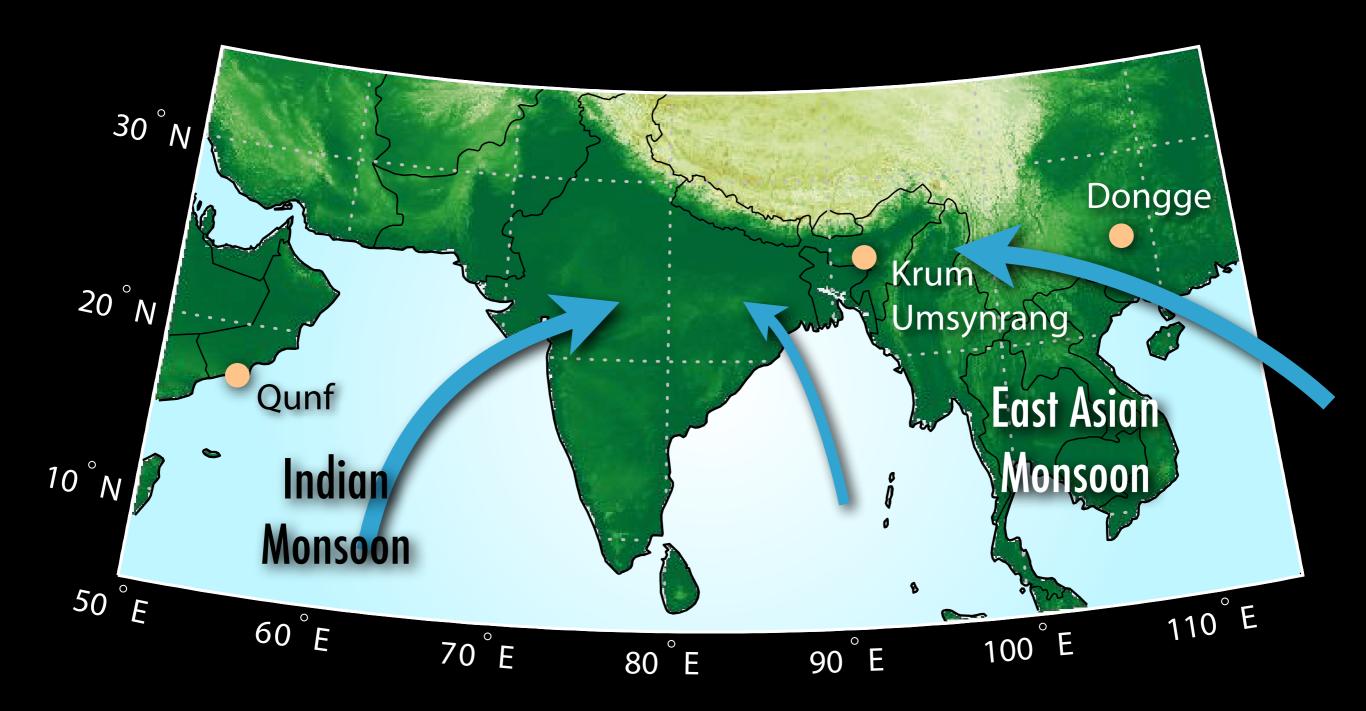


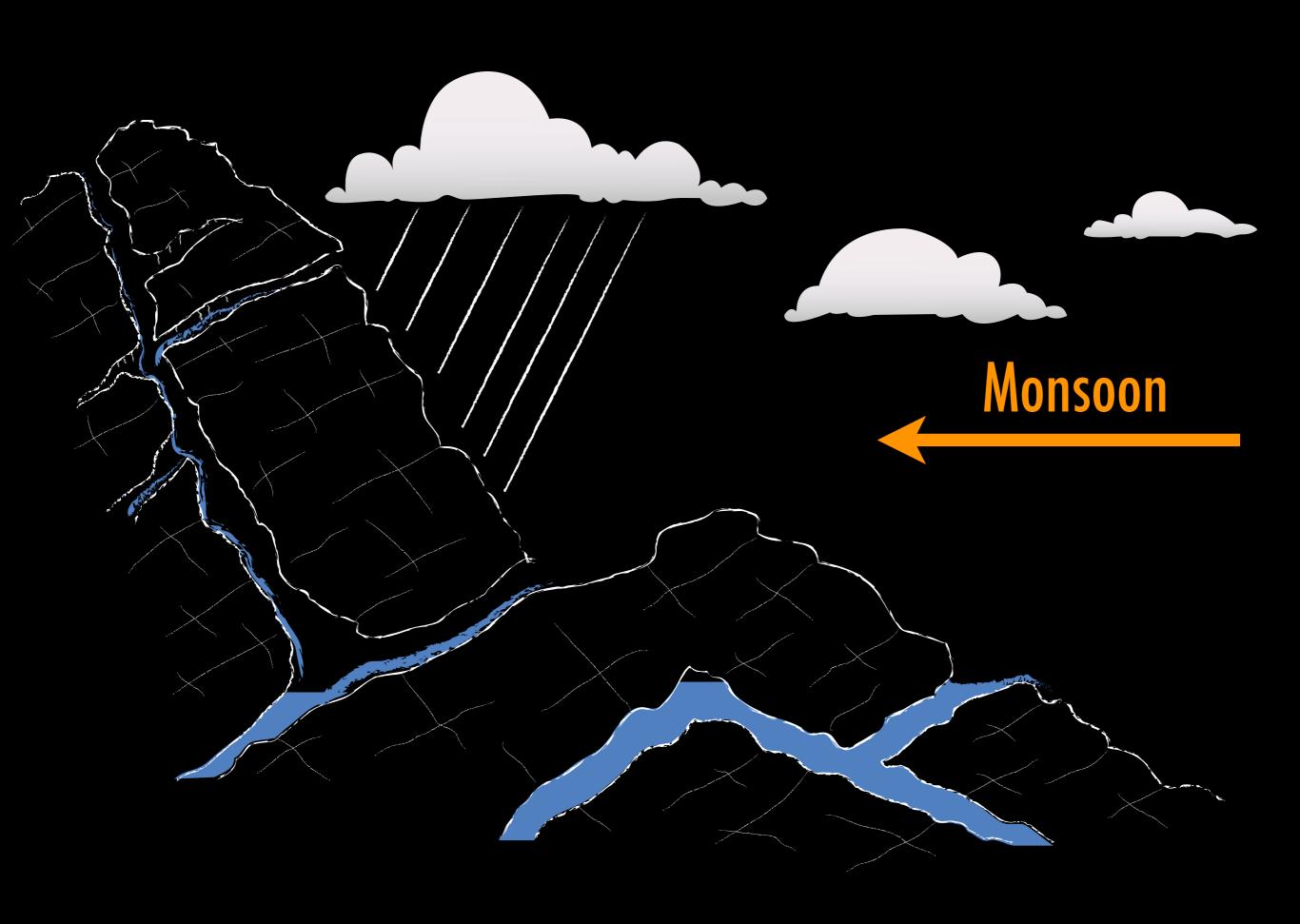


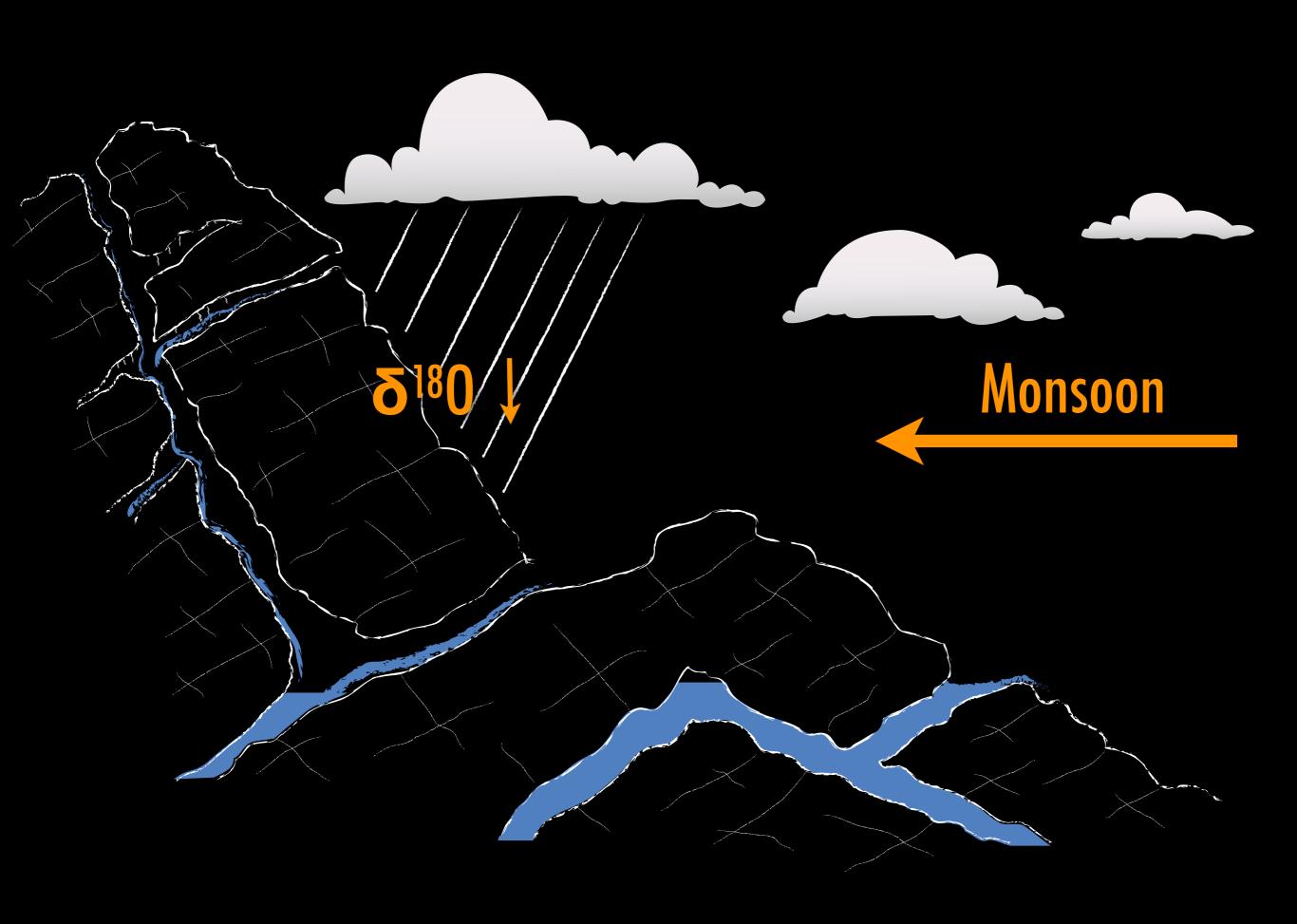


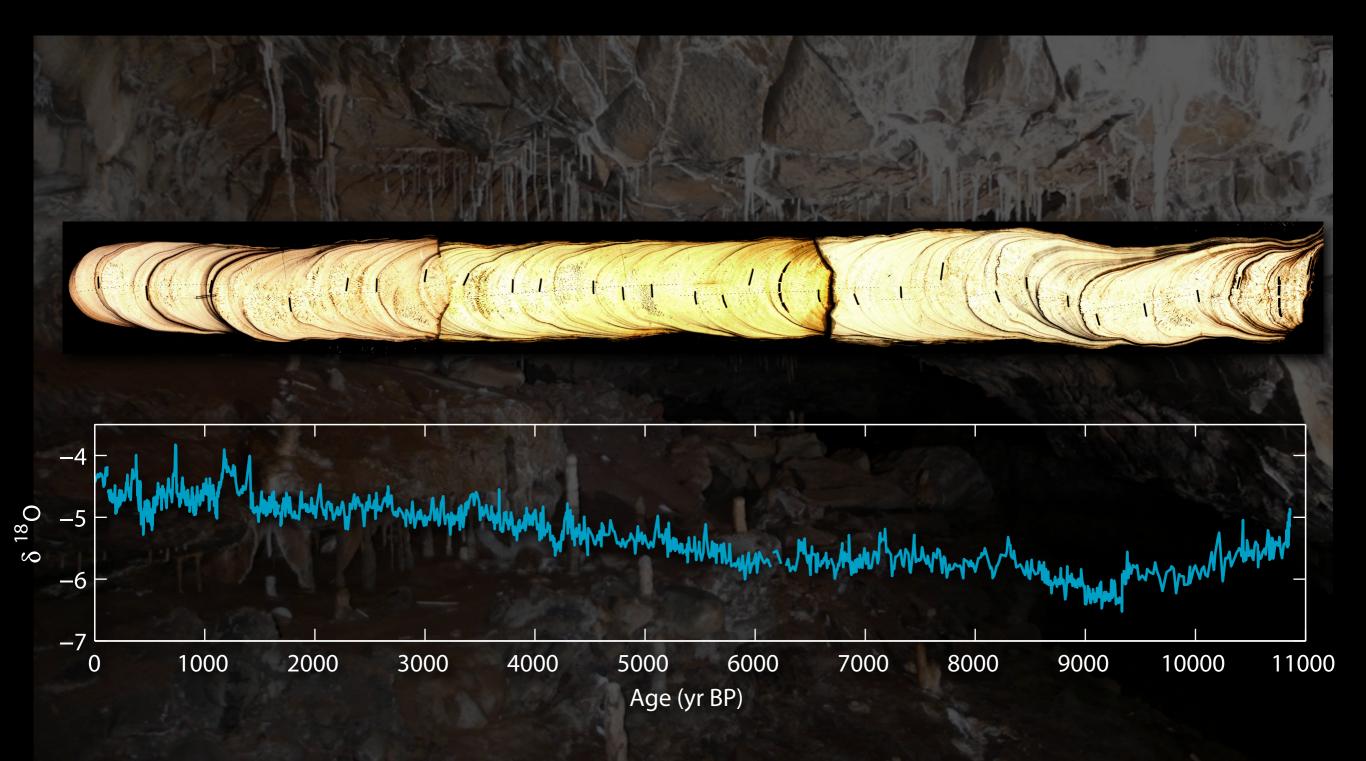
intermittent phases

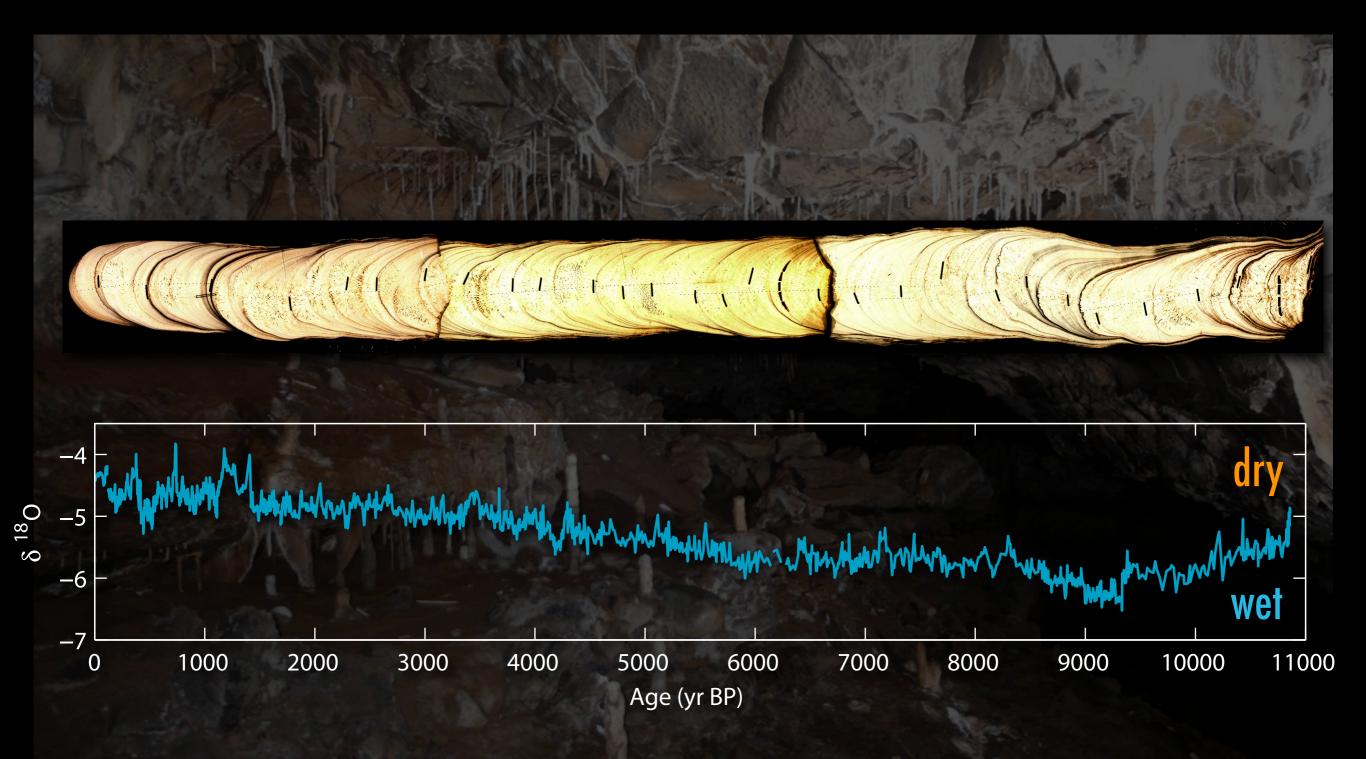


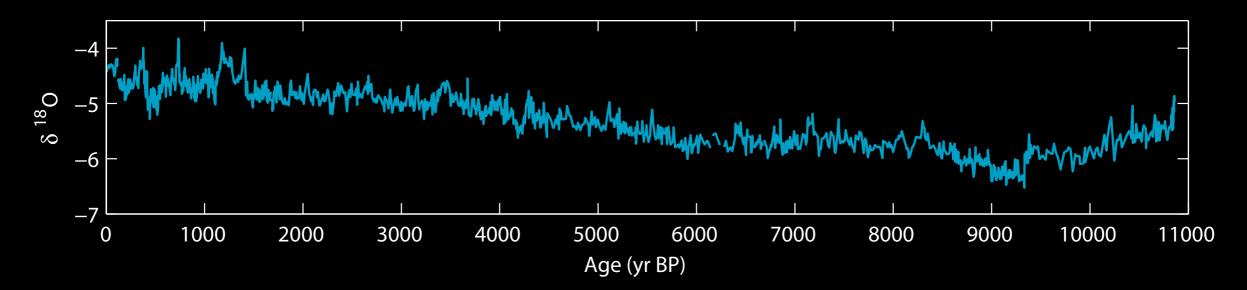


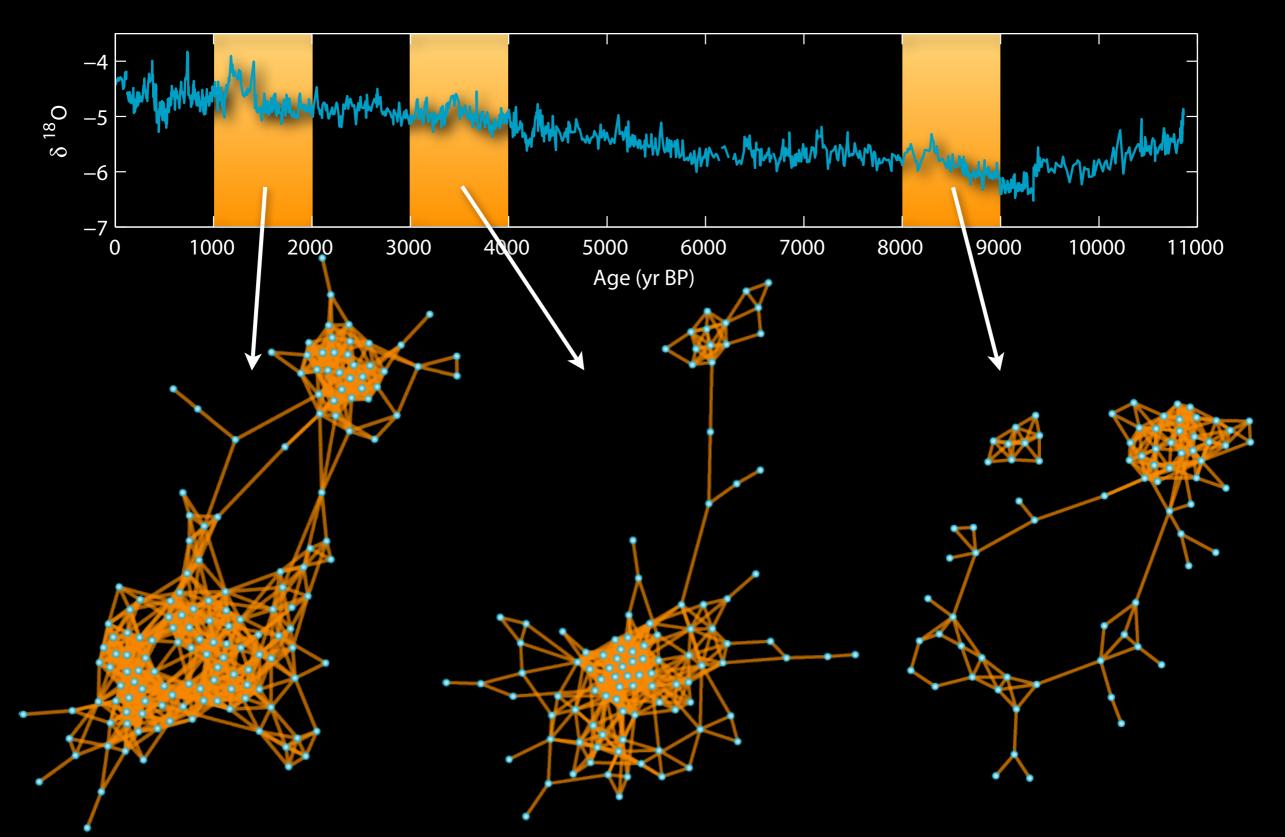


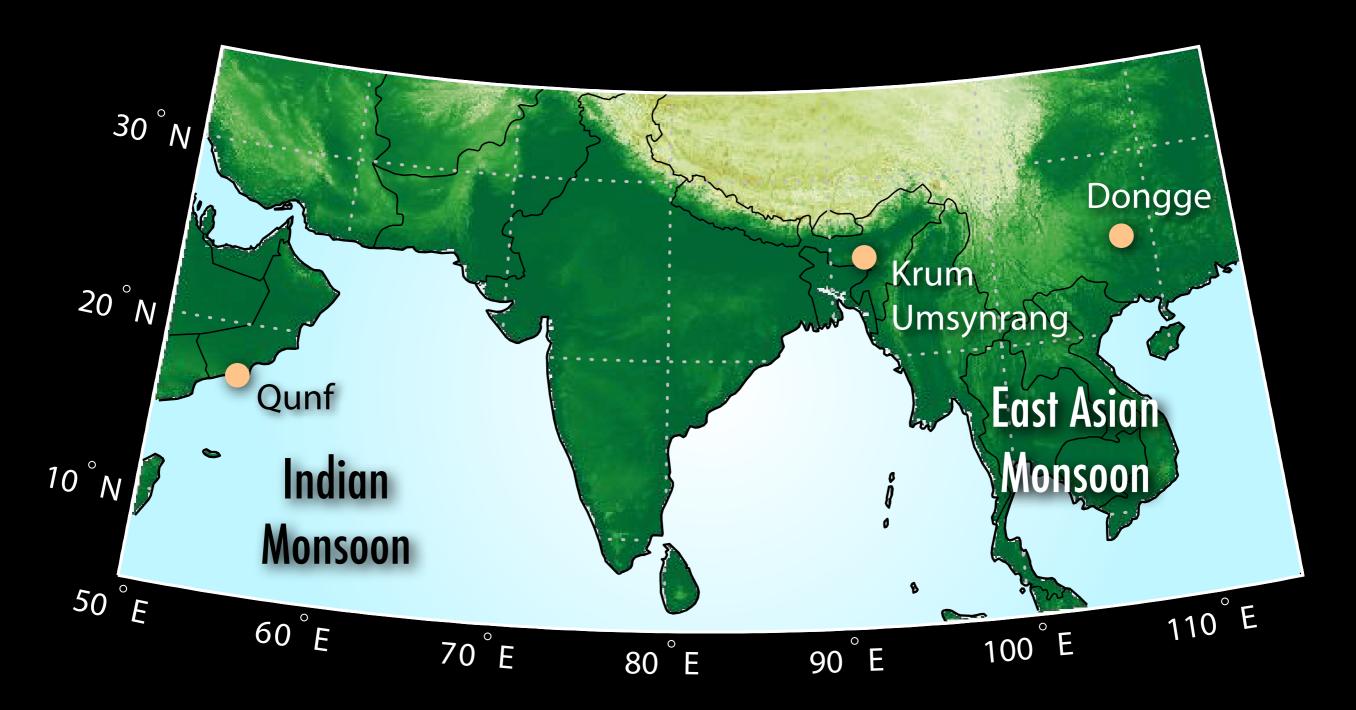


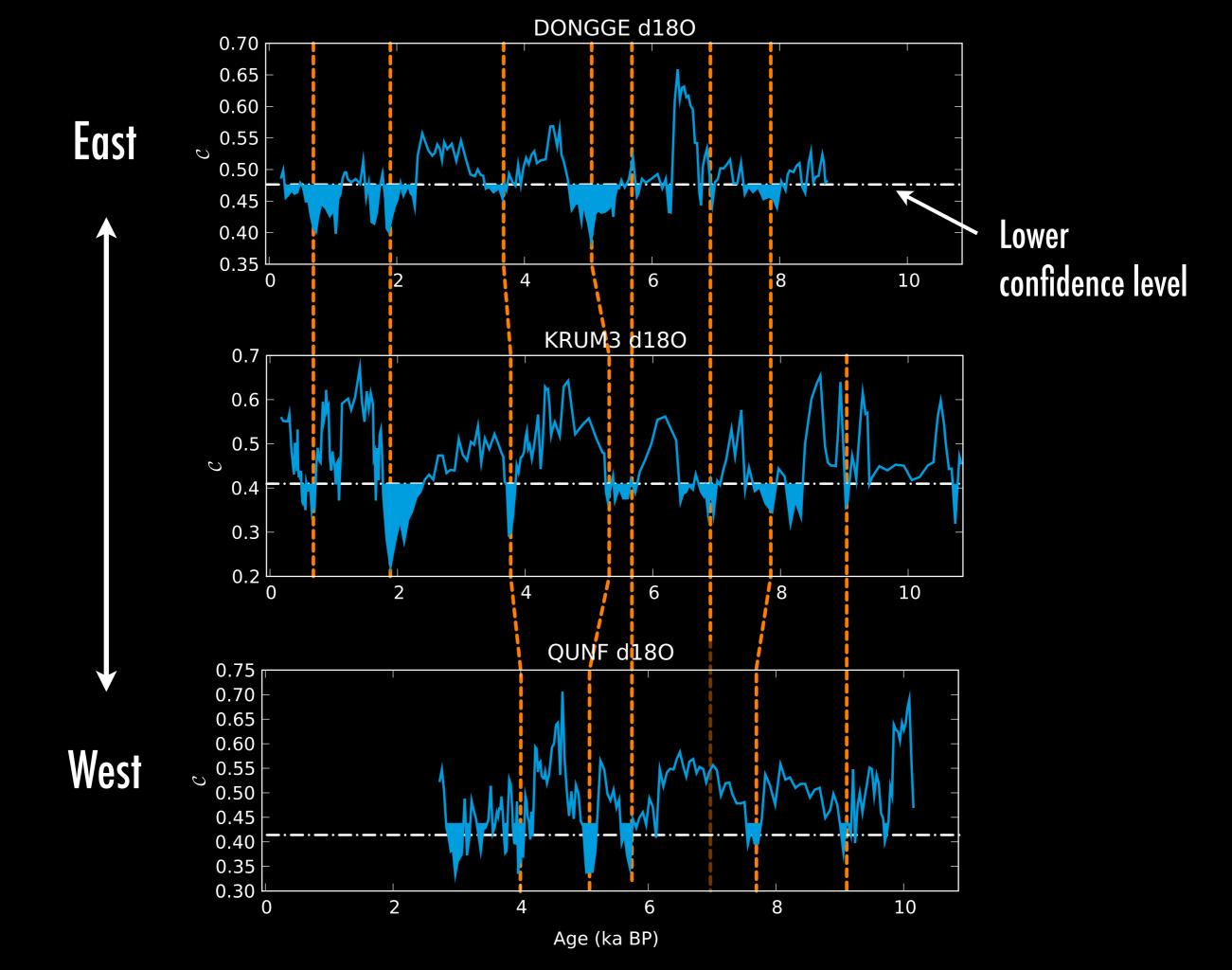


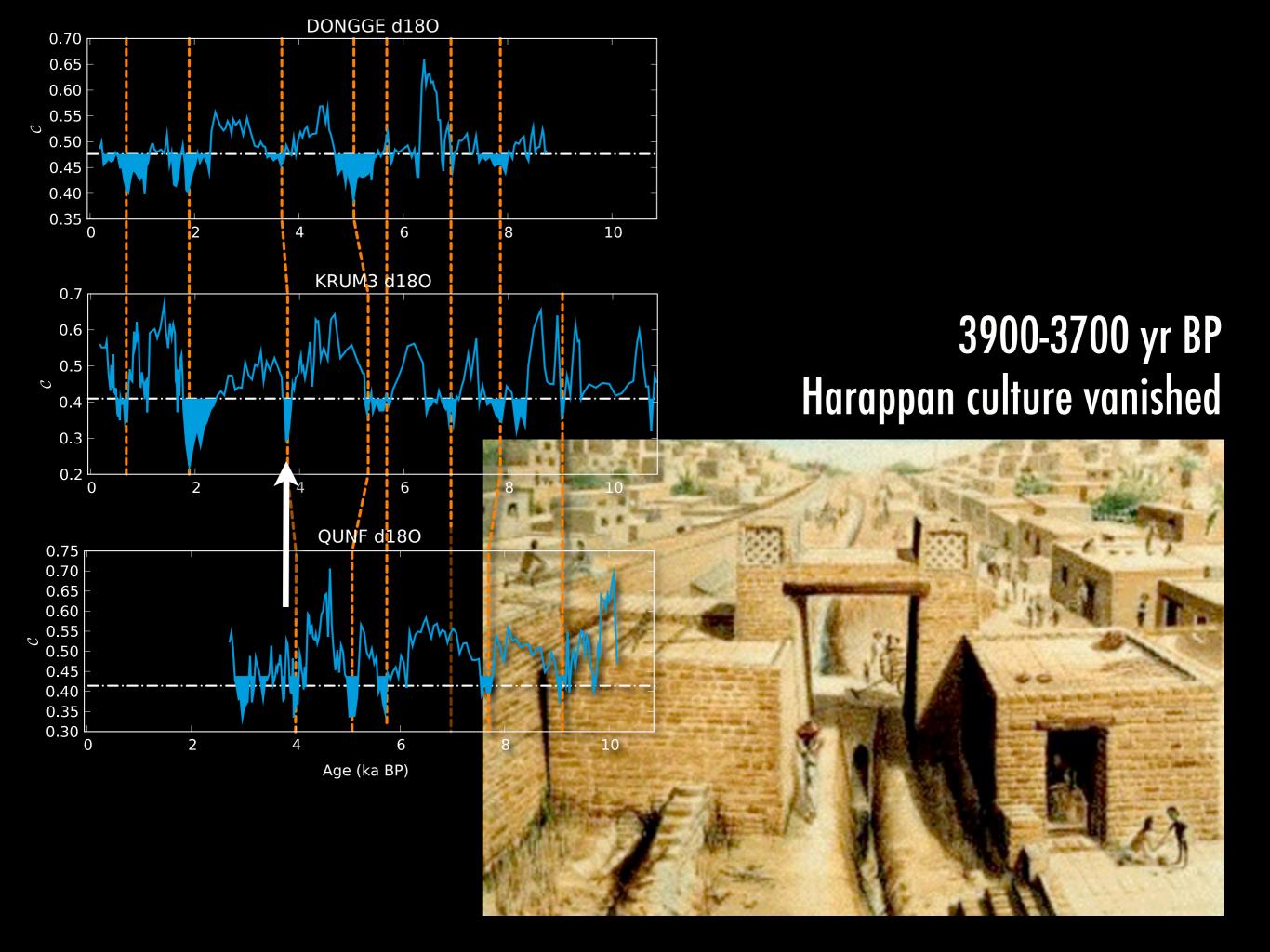












Summary

- Complex networks from time series
- Identification and classification of dynamics (regular chaotic)
- Detection of transitions in dynamics (bifurcations, structural discontinuities)
- Complementary analysis to traditional recurrence analysis

Alternative Approaches

- Visibility graph
- Cycle network
- Correlation network
- Transition network

Key Publications

- N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, J. Kurths: Complex network approach for recurrence analysis of time series, Physics Letters A, 373(46), 4246–4254 (2009).
- J. F. Donges, R. V. Donner, M. H. Trauth, N. Marwan, H. J. Schellnhuber, J. Kurths: Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proceedings of the National Academy of Sciences, 108(51), 20422–20427 (2011).
- R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths: Recurrence-based time series analysis by means of complex network methods, International Journal of Bifurcation and Chaos, 21(4), 1019–1046 (2011).