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Recurrence Quantification Analysis
For the investigation of dynamical systems, recurrence based 
methods have proven its potential even for short and 
non-stationary data series. A recurrence plot is usually 
defined as a binary matrix representing the pairwise 
closeness of the values of a data series:
R(i, j) = Θ(e - || x(i) - x(j) ||.
By quantification of the line structures in a recurrence plot, 
we are able to characterise the dynamics of the system with 
measures of complexity. It has been shown that such 
measures, calculated in moving windows, are able to detect 
transitions in the dynamics of systems, like chaos-period, 
chaos-chaos and chaos-SNA transitions (Marwan et al, 
2007). 

Here we exemplary use the measures of complexity 
measuring the fraction of recurrence points forming diagonal 
(Determinism, DET) and vertical lines (Laminarity, LAM). For 
both measures, we need the histograms of line lengths P(l). 
Determinism is the probability that recurrent states will 
further be recurrent and Laminarity is the probability that 
(very) slowly changing states remain in similar states. High 
values of Determinism are typical for deterministic systems 
and high values of Laminarity are typical for intermittency.

Application to Event Related Potentials (ERP)
In the Oddball experiment, a number of visual or acoustic 
stimulii of different surprising effect (10% and 90% event 
probability) is shown to a proband. The averaging of the 
measured EEG data reveals a P300 component, which is 
anti-correlated with the event probability. This component 

reflects the switching between two modi of cognitive 
behaviour: During episodes where the frequent stimuli are 
presented to the subjects, they went into a mode of 
automatic processing of the events. When suddenly the rare 
stimulus arises, the brain function is switched to controlled 
processing. 
The investigation of such ERPs on a single trial basis is 
rather difficult. However, recurrence based methods have 
the potential to recognize the specific ERP components even 
on a single trial basis (Marwan and Meinke, 2004; Marwan et 
al, 2007; Schinkel et al, 2007). 

As a stat ist ica l test for the RQA based 
transition analysis we propose the following 
bootstrap procedure:

(1) Merge all local histograms of line lengths 
Pi(l)

 Q(l) = ∪i Pi(l)

(2) Now we draw n line structures from 
Q ( l ) (n i s t he mean number o f l i ne i n a 
window); we get the empirical distribution 
of line lengths P*(l).

(3) We use P*( l) for calculating our RQA 
measure (DET and LAM, resp.).

(4 ) Repeat ing s teps (2 ) and (3 ) we get 
empirical test distributions for DET and 
LAM, which we use for statistical test (α
-quantiles). In the following examples use 
5,000 realisations.
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Bootstrap Procedure Example: Logistic Map with Transitions

Application: Event Related Potentials

(A) Logistic map with chais-period and chaos-chaos transitions for 
control parameter a = [3.9200  3.9325] and corresponding RQA 
measures (B) DET and (C) LAM. For a = [3.92221  3.92227] we have 
a period-7 window, for a = [3.93047  3.93050] a period-8 window 
and at a broad range around a = 3.928 intermittency (highlighted with 
orange bars). 99% confidence bounds are shown as blue dash-dotted 
lines. RQA settings: no embedding, fixed RR (5%), window = 200 and 
step = 200.

Empirical distributions for DET and LAM derived from bootstrapping 
recurrence structures. These distributions follow normal distributions 
(a fitted normal distribution shown by the black line).

Applying RQA on EEG measurements of an Oddball experiment, we find event related 
potentials (P300) even in single trials (Marwan and Meinke, 2004; Schinkel et al, 2007).  
Recurrence plots of EEG signals measured (A) without surprise and (B) with surprise. RQA 
settings: embedding dimension = 3, delay = 2, fixed RR (5%), window = 50 (200 ms), step = 10 
(40 ms).

RQA measures for EEG signals (A, C, E) with surprise and (B, D, F) without surprise. DET 
and LAM reveal transitions in the signal measured at surprise around 300 ms , corresponding 
to the ERP P300. By application of the bootstrap test, we find a 99% confidence of these 
results. In contrast, for the signal without surprise, we cannot detect an ERP with 99% 
confidence.
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