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The recurrence quanti!cation is applied 
on the δ18O stalagmite data in order to 
compare them with the special focus on 
dynamical transitions.

Note that this study is a methodological 
work and the results are preliminary.
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Recurrence quanti!cation of the δ18O records. Despite the di#erences in the recurrence structure, the measures 
DET and LAM reveal transitions at almost the same times for the locations in Oman and Himalaya. The record from 
China shows delayed transitions (10-160 yrs).
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Recurrence plots of the δ18O records. The recurrence structure di#ers in all three plots, revealing the di#erent nature of the impact of the 
monsoon and thedi#erent source of the monsoon 

The recurrence analysis clearly reveals 
transitions in the monsoonal dynamics for 
the Oman and Himalayan stalagmites at 
2750, 3310, 3490 and 3900 yrs BP. Despite 
the meaning of these years, this suggests 
rather rapid changes in the ISM. The Chi-
nese stalagmite record reveals transitions 
at other times (2990, 3210, 3540, 3740, 
3990 yrs BP), indicating di#erent mon-
soonal dynamics of the ISM and the EAM.

Although the type of monsoonal in$u-
ence is di#erent at the Oman and Himala-
yan locations, the simultaneous occur-
rence of the transitions in the δ18O records 
con!rms the in$uence of the ISM on both 
locations. However, the record from the 
more eastern region (China) does not 
reveal the same transitions. This region is 
in$uenced by the EAM, whose changes 
are not in coincidence with or are delayed 
regarding the ISM.

Moreover, this results con!rm that it is not 
possible to conclude from one stalagmite 
record for the dynamics of the entire mon-
soonal circulation system.
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Asian speleothem records of δ18O provide 
past continental monsoonal variability. 
The few available stalagmites from Asia 
cover a region in western, central and 
eastern Asia, where the Indian Summer 
Monsoon (ISM) and the East Asian Mon-
soon (EAM) are active. Due to the di#erent 
regional (local) monsoonal in$uences, dif-
ferent δ18O regimes in these di#erent re-
gions are expected and were con!rmed 
by measurements. However, changes in 
the monsoonal circulation system could 
have impact at all places, although not 
obvious in the data, and perhaps after 
some delay (between ISM and EAM).
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δ18O records derived from stalagmites of three di#erent caves: 
Qunf (Oman), Dharamjali (India, Himalaya) and Dongge (China). 
In our study we focused on the time range between 2600 and 
4100 yr BP (orange overlay). The data were low pass !ltered (0.6 
yr-1). Although the data show regions with some correlation, 
most parts seems to be uncorrelated.

Stalagmite DHAR-1 from the 
cave Dharamjali (Himalaya).

Ri, j = − xi − x j , i, j = 1, . . . , N

Recurrence is a fundamental property of dy-
namical systems. Recent developments in non-
linear data analysis have focused on recur-
rences in order to successfully analyse and un-
derstand processes in di#erent scienti!c !elds 
(physiology, economy, astrophysics etc.).

An appropriate tool for a recurrence analysis is 
the recurrence plot,

which visualises such times, when a state of the 
system (at a certain) time recurs.

Recurrence plots exhibit typical large- and 
small-scale structures, which can be interpreted 
and quantitatively analysed (cf. Marwan et al., 
2007). Typical measures of complexity for recur-
rence analysis use recurrence probability or the 
histogram of the lengths of the diagonal or ver-
tical lines, like

determinism

or laminarity

A time dependent quanti!cation of the recur-
rence structure can reveal dynamical transitions 
in the system.

LAM =
N
v= vmin P(v)

i, jRi, j

DET =
N
l= lmin P( l)

i, jRi, j

First component of the Rössler system, revealing a transi-
tion from periodic to chaotic behaviour (change from 
b=0.7 to b=0.2 and c=3.6 to c=5.7; a=0.2 in both seg-
ments).
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Phase space trajectory for the Rössler oscillator. Orange: 
periodic part, blue: chaotic part.
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Distance plot (left) of the Rössler system. In order to con-
struct a recurrence plot from a phase space trajectory, a 
threshold is applied on the distance plot. Corresponding 
recurrence plot (right) of the consideredsystem.  The tran-
sition from periodic to chaotic behaviour is obvious.
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Recurrence quanti!cation of the Rössler system, clearly 
indicating the transition from a regular (periodic) phase 
to a non-regular (chaotic) one around time t=200.


