A New Quantitative Approach for Measuring Changes of 3D Structures in Trabecular Bone

Norbert Marwan

Peter Saparin, Jesper S. Thomsen, Jürgen Kurths

Nonlinear Dynamics Group University of Potsdam MPI Colloids and Interfaces Golm Århus University

MAP A0-099-030 contract #14592

Bone Loss in Space

- bone loss in space: 1.5% per month
- 2nd important problem after radiation
- monitoring bone alterations during space flights

© Courtesy of NASA, 2005

Trabecular Bone Structure

- plays important role for bone strength
- changes during development of osteoporosis or in microgravity

Purpose of this Study

- define measures of complexity for 3D
- quantification of microarchitecture of trabecular bone (3D µCT)
- osteoporosis used as a model for bone loss in micro-gravity

Structural Quantification

Histomorphometry

- "gold standard"
- invasive method

Structural Quantification

Measures of Complexity

- three symbols
- marrow (blue)
- internal bone (green)
- surface (red)

Structural Quantification

Measures of Complexity (cont.)

• 3D Normalised Entropy (NormEnt)

- Structure Complexity Indices (SCI_{BV/TV}, SCI3D)
- Surface Complexity Index (SurfCI)

Saparin, et al: Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity, Acta Astronautica, 56, 2005

New Approach

Shape Related Measures

• quantification of the 3D shape by volume and surface

Shape Related Measures

• Shape Index (SHI) $SHI = \frac{S_{\text{bone}}}{S_{\text{sphere}}} = \frac{S_{\text{bone}}}{\sqrt[3]{36\pi V_{\text{bone}}^2}}$

• Averaged Shape Index (ASHI) $ASHI = \langle SHI_{loc} \rangle_{VOI}$

Shape Related Measures

- Shape Complexity (SHC) $SHC = -\sum p(S_{1oc}, V_{1oc}) \log \frac{p(S_{1oc}, V_{1oc})}{p(V_{1oc})}$
- Shape Index Entropy (ISHI) $ISHI = -\sum p(SHI_{loc}) \log p(SHI_{loc})$

variability/ complexity of the shapes

Volume and Surface Estimation

marching cube (MC)

voxel counting

Marching Cubes

- eight voxels form a marching cube (MC)
- iso-surfaces
- 3D rendering

Lorensen, et al: Marching cubes, SIGGRAPH, 21, 1987

Marching Cubes

- eight voxels form a marching cube (MC)
- iso-surfaces
- 3D rendering

Lorensen, et al: Marching cubes, SIGGRAPH, 21, 1987

Marching Cubes Filling (Volume Estimation)

Marching Cubes Filling (Volume Estimation)

Marching Cubes Cases

Marching Cubes Based Measures

• Marching Cubes Entropy Index MCE $MCE = -\sum p(MC) \log p(MC)$

• Marching Cubes Complexity MCC $MCC = \langle N_{\text{tetra}} \rangle_{\text{VOI}}$

complexity of the surface

Data & Results

Proximal Tibia

- cylindrical biospies
- 7 mm diameter
- 17 mm below tibial plateau
- 29 specimens
- VOI: 5 mm below cortical shell, 10 mm long

Proximal Tibia

Shape Index Distribution

concave structures

Shape Index

• correlation with bone density

concave structures

Bone Volume Fraction

• correlation with SHC and MCE

MC Entropy

• correlation with TBPf and Tb.Sp

Histomorphometry

• correlation with MCE, ASHI and SHC

Rank Correlation

	ASHI	ISHI	SHC	MCE
3D BV/TV	-0.74		-0.72	0.87
TBPf	0.66		0.63	-0.88
Nd/Tm	-0.68		-0.63	0.68
Tb.Sp	0.50	0.51	0.66	-0.68

Lumbar Vertebra

• confirmation of results

Conclusions

- measures of complexity for 3D image analysis
- quantify 3D micro-structure of trabecular bone
- bone loss (proximal tibia):
 - > complexity of bone surface decreases
 - > amount of concave structures decreases
 - > variation of the trabecular' shapes increases

Conclusions

• potential applications:

- > quantification of bone loss in micro-gravity
- > diagnostics of pathological changes in bone structure in patients on Earth
- > evaluation of medical treatment results