ΡΙΚ

POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH

Contents

1. Background 2. Proxy Estimation: A Bayesian Approach 3. Summary

The "calibration" curve relates ¹⁴C ages to true ages but results in irregular, multimodal age distributions.

From Calibrated Ages to Proxy Values **A Simple How-To-Get-There**

PICK AN AGE OF YOUR CHOICE...

... and Follow the Dashed Lines clockwise.

E.g., from the two calibrated ages: 1474 yrs calBP (cyan) and 2211 yrs calBP (yellow), go up to their ¹⁴C ages. Turn right. Go straight to the respective weight functions (near their highest peaks).

Go down to the proxy measurements to a value equalling the weighted mean of the proxy observations using the weight function. Turn 90° clockwise and go straight till you are at the age you started with. The height you are at is the expected proxy value for that age (marked with a circle and suitable error bar).

repre 68.3%

Given any true age, we estimate the proxy probability density by weighting all proxy observations with the weight function for that particular age.

References:

[1] J. Heitzig (2012) Moving Taylor Bayesian Regression for nonparametric multidimensional function estimation with possibly correlated errors

Bedartha Goswami^{1,2}, Jobst Heitzig¹, Kira Rehfeld^{1,3} Norbert Marwan¹, Jürgen Kurths^{1,3}

¹Potsdam Institute for Climate Impact Research, Transdisciplinary Concepts & Methods, Potsdam, Germany ²Department of Physics, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany ³Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany

We apply a nonparametric **Bayesian regression [1] on the** age-depth observations to get posterior probabilities of ages at those depths where the

The regression estimate is shown in green.

Using Bayes' Theorem, we construct "weight" functions which tell us: Given any calibrated age, which depths are more likely to correspond to that age?

INSUMMARY, we present a new, method for analytical proxy estimation that circumvents the intermediate step of a proper age model. This overcomes limitations of existing age modelling procedures such as the assumption of Gaussianity of calibrated age distributions. The resulting confidence bounds represent the true amount of uncertainty in the data.

