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Abstract

A considerably extended two-dimensional version of the famous Lovelock–Watson model for
geosphere–biosphere interactions (“Daisyworld”) is employed to investigate the impact of habitat
fragmentation. The latter is dynamically modelled through the standard percolation process �rst
introduced by solid state theory. It is found that the connectivity of the space accessible for life
is crucial for ecological performance. In particular, the self-stabilizing capacity of the biosphere
strongly depends on the fragmentation topology. An extremely rich and partially counter-intuitive
eco-dynamics is observed when a simple community structure, consisting of plants and herbi-
vores, is introduced. Quite remarkably, high herbivore vitality destroys the stability of the entire
biosphere in a way reminiscent of “deserti�cation”. c© 1999 Elsevier Science B.V. All rights
reserved.

1. Introduction

Life in the Earth system is not simply adapted to �xed or prescribed environmental
conditions. The biosphere actually in
uences and controls, to a considerable extent, the
setting for its own evolution. This uncontested insight is echoed by the much-debated
“Gaia Hypothesis” (see, e.g., [1]), which speculates about self-stabilizing capabilities of
the “planetary super-organism”. Whether the hypothesis is correct or not, the underlying
geophysiological approach to the explanation of geosphere–biosphere interactions is
most valuable and may provide explanations for some puzzling observations. Long-term
sedimentary records indicate, for instance, that there has always existed 
uid water
on the Earth’s surface [2]. This is a crucial hint to our planet’s strong ability to
self-regulate against external and internal driving forces. Although the solar luminosity
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was signi�cantly lower in the past, the dead end of an ice planet has been avoided. A
better understanding of this surprisingly resilient character of the coupled geosphere–
biosphere system is highly relevant, especially, in view of the unintentional global
experiments humankind is presently conducting via modi�cation of the composition of
the atmosphere or fragmentation of terrestrial vegetation cover.
A particularly useful ansatz for the investigation of geosphere–biosphere feedbacks

is the Lovelock–Watson model (LWM) of “Daisyworld” [3,4]. Despite its toy charac-
ter, this model sheds much light on possible mechanisms of environment stabilization
through evolutionary adaptation of terrestrial vegetation to varying insolation. Even
more insights can be gained if the simple LWM is replaced by a 2D cellular automa-
ton (CA) version [5], which takes into account a number of additional physical (e.g.,
lateral heat 
ow) and biological (e.g., food-web dynamics, competition and mutation)
processes re
ecting the interacting elements within the real Earth system.
Within our 2D model the area eligible for vegetation growth is initially a full square

normalized to unity, i.e., a simply connected domain. For the sake of realism, however,
we also have to take into account that the area available for biospheric adaptation to
“Global Change” forces is highly fragmented by civilisatory activities: urban settle-
ments, infrastructures, agriculture, tourism, etc. The implications of habitat fragmenta-
tion on biodiversity is at present a much-debated issue.
Our toy planet constitutes an ideal theatre for investigating this question and related

ones in some depth; we speci�cally ask how the species make-up of the biosphere and
the resulting self-stabilizing properties depend on landscape heterogeneity. The latter
is mimicked here in a well-de�ned way: we employ the percolation model from solid
state physics [6] in order to mimick successive non-trivial reduction of growth space.
Thus our paper is organized as follows: In Section 2 we describe in some detail the
geophysiological simulation model used by introducing the pertinent elements to be
considered one by one. In Section 3, we study the e�ects of percolation-type habitat
fragmentation for di�erent degrees of complexity of the biosphere make-up. The lessons
to be learned from our results are reviewed in the short concluding section.

2. Modelling the geosphere–biosphere feedback interactions

2.1. The Lovelock–Watson model of “Daisyworld”

The original LWM is a zero-dimensional caricature of a planet which is illuminated
by the sun and which is able to support merely two di�erent types of vegetation cover.
The surface of the “naked” planet, i.e., the planet without vegetation, is characterized

by an overall albedo A0. The equilibrium temperature T0 depends on the insolation S
and the black-body radiation according to

�BT 40 = S(1− A0) ; (1)
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where �B is the Stephan–Boltzmann constant. As mentioned above, the toy biosphere
consists of two components only:
• Species 1 with albedo A1¿A0 (“white daisies”), covering an area a1 with temper-
ature T1¡T0;

• Species 2 with albedo A2¡A0 (“black daisies”), covering an area a2 with temper-
ature T2¿T0.

The temperature-dependent growth rate �T (Ti) of species i is a unimodular function
with a maximum at Topt = 22:5

◦C:

�T (Ti) =




4
(40− 5)2 (Ti − 5)(40− Ti) 5¡Ti ¡ 40

0 else
: (2)

The dynamics of our model biosphere is governed by a system of two coupled nonlinear
di�erential equations:

ȧ1 = a1(�T (T1)x − 
) ; ȧ2 = a2(�T (T2)x − 
) : (3)

Here 
 denotes a constant mortality rate and x, the uncovered area, is trivially given
by

x = 1− a1 − a2 : (4)

This feedback system has been analysed by several authors [7–10] in great detail.
One remarkable result is that, in contrast to the uncovered planet, the “bioplanet”
is able to keep the global temperature relatively constant when the external “control
parameter” S is varied within a rather wide range. This property of self-regulation is
referred to as “homeostasis”. As a matter of fact, homeostasis is achieved here by a
rather simple mechanism: white (black) daisies are �tter in hot (cold) climates as their
comparatively high (low) albedo tends to reduce (increase) the local temperature.

2.2. Introducing spatial dependence, competition, and mutation into Daisyworld

In general, the stable coexistence of many di�erent species in Daisyworld can be
brought about either by temporal 
uctuations or by extending the spatial dimensionality.
In this paper, the second approach is used and our planet will be represented by a 2D
plane with coordinates x and y [11,5].
The “climate” here coincides with the temperature �eld T (x; y; t), which is governed

by an elementary energy balance equation (see, e.g., [12]):

C
@T (x; y; t)

@t
= DT

(
@2

@x2
+
@2

@y2

)
T (x; y; t)− �BT (x; y; t)4 + S(1− A(x; y; t)) ;

(5)

where DT denotes the di�usion constant and A(x; y; t) represents the spatiotemporal
distribution of albedo. The latter re
ects the prevailing vegetation pattern.
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We consider an extended biosphere consisting of in�nitely many di�erent species,
which may be conveniently classi�ed by their speci�c albedos A ∈ [0; 1]. So the vari-
able A serves a twofold purpose, namely (i) to label the “daisies” stored in the genetic
pool, and (ii) to express their radiative properties. As a consequence, the vegetation
dynamics within our model can be directly represented by the albedo dynamics.
To achieve this we have to translate the vegetation growth rules, which can be set up

in the spirit of the LWM, into albedo modi�cation rules. Their dependence on T and
Eq. (5) then determine the coevolution of albedo and temperature �eld, respectively,
in the plane. As the analytic solution of this intricate nonlinear dynamics is unfeasible,
we will have to resort to numerical computation schemes based on discretization of the
system. It is therefore reasonable to employ the CA approach from the outset [13,14].
One major advantage of this approach is the fact that consistent albedo modi�cation
rules can be written down immediately.
The CA is constructed as follows: the plane is replaced by a quadratic lattice (xi; yj),

where xi = i�x; yj = j�y; i; j ∈ N, and the basic spatial units �x; �y can be chosen
arbitrarily. Time proceeds in discrete steps tn = n�t, where n ∈ N and �t is again an
optional unit. Thus any systems variable F becomes a function F(xi; yj; tn).
The occurrence of vegetation in a particular cell (xi; yj) at time tn can be indicated

by a binary coverage map c(xi; yj; tn): N3 → {0; 1}. The albedo dynamics is then
determined by the following rules:
(1) c(xi; yj; tn) = 1, i.e. the cell is covered by vegetation.

c(xi; yj; tn+1) =

{
1 with probability 1− 

0 else

;

⇒

A(xi; yj; tn+1) =

{
A(xi; yj; tn) if c(xi; yj; tn+1) = 1

A0 else
:

(6)

(2) c(xi; yj; tn) = 0, i.e., the cell is uncovered.
Then choose at random a next-neighbour cell (xNN; yNN) of (xi; yj) and make the

following distinction:
(a) c(xNN; yNN; tn) = 0

⇒
c(xi; yj; tn+1) = 0 ;

A(xi; yj; tn+1) = A0 :
(7)

(b) c(xNN; yNN; tn) = 1

c(xi; yj; tn+1) =

{
1 with probability �

0 else
;

⇒

A(xi; yj; tn+1) =

{
f(A(xNN; yNN; tn)) if c(xi; yj; tn+1) = 1

A0 else
:

(8)
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Thus 
 and � denote again mortality and growth rate, respectively. The growth prob-
ability � depends only on the temperature of the uncovered cell at site (xi; yj), i.e.,
� ≡ �T (T (xi; yj; tn)). The function f in (8) o�ers the opportunity to incorporate also
more sophisticated biological e�ects: by choosing, for instance, f(A) = A + R, where
R is a random number distribution with the properties R ∈ [ − r; r], 〈R〉 = 0, it is
possible to take mutations of the albedo into account. Here r¿0 can be interpreted as
the mutation rate.

2.3. Introducing herbivores into Daisyworld

In order to re
ect fundamental ecosystems dynamics based on trophic interactions
as well, we extend the 2D model even further and add herbivores to our toy planet
(see also, e.g., [15]). These vegetarian “lattice animals” move on the grid as random
walkers. As in reality, the herbivores are capable of reproduction, but the latter capacity
depends heavily on their nutritional state.
Formally, the herbivore dynamics can be conveniently described by an occupation

map ch(xi; yj; tn) : N3 → {0; 1}, de�ned on a second lattice layer parallel to the daisy
lattice, and a small set of non-deterministic behavioural rules. If the site (xi; yj) is
occupied by an animal at time tn, i.e., ch(xi; yj; tn) = 1, then those rules allow for four
di�erent events:
Death: The herbivore deceases with a probability 
h, thus ch(xi; yj; tn+1) = 0.
Ingestion: If the herbivore survives and if the cell is covered by a daisy, i.e.

c(xi; yj; tn) = 1, then the animal consumes the plant. The number of ingestion acts that
have been performed by the herbivore considered so far is stored as a state variable
N . Thus,

N (xi; yj; tn+1) = N (xi; yj; tn) + 1 (9)

in this case. Evidently, we also have c(xi; yj; tn+1) = 0 and A(xi; yj; tn+1) = A0.
Reproduction: The herbivore in question may give birth to a “lattice child” at a

randomly chosen next-neighbour cell with probability

� = �T (T (xi; yj; tn))�N (N (xi; yj; tn)) : (10)

The temperature-dependent factor �T is chosen similar to the one which governs the
growth of daisies, while �N is assumed to behave like a discrete Heaviside function,
i.e.,

�N (N ) =

{
1 for N ¿N0

0 else
: (11)

The latter assumption re
ects the conception that only “grown-up” lattice animals will
be capable of replication. Clearly, the ingestive status of the new-born herbivore is
zero.
Move: The herbivore may also walk to a randomly chosen next-neighbour cell if

this cell is not already occupied by another herbivore.
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As a matter of fact, consistent combinations of all those events may occur according
to the probabilistic set-up. Note that the presence of herbivores is not assumed to
change the local albedo. So it is only the act of daisy consumption that a�ects the
radiative properties of our virtual environment.
Note that the interaction between plants and animals is realized by mainly two pro-

cesses, namely (i) temperature-dependent reproduction of herbivores and (ii) ingestion
of daisies. Note also that our herbivores are rather dumb as their dietary strategy con-
sists in random walking only.

3. The impacts of fragmentation on ecologic performance

A critical factor a�ecting real ecosystems is the fragmentation of species habitats.
Very few theoretical studies (not to speak about empirical ones) have been performed,
however, to reveal the impacts of fragmentation in a rigorous quantitative way. Our
extended Daisyworld model allows for such investigations with special emphasis on
the modi�cation of habitat geometry. Within the framework of our tutorial model we
can expect, in particular, that fragmentation will create “ecological niches” for plants
of inferior �tness and obstruct the forage activities of the animals.
Before we describe our speci�c way of fragmenting the landscape, let us mention

that the 2D model without herbivores and homogeneous habitat exhibits an even better
self-stabilizing ability than the simple LWM. However if the environmental stress –
increasing insolation, for instance – exceeds a certain critical threshold, “life” breaks
down on the arti�cial planet via �rst-order phase transitions. The latter fact implies the
presence of hysteresis e�ects including bistability. A detailed account of those �ndings
is given in von Bloh [5].
Here we focus on the modi�cations of geosphere–biosphere dynamics as triggered

by restricting the habitable zone within our model world. In order to be speci�c, we
generate landscape heterogeneity by employing the well-known percolation model from
solid state physics [6].
The percolation model on a square lattice is formulated in the following way: For

a given probability p ∈ [0; 1], each site will be randomly occupied with probability
p. As a consequence, it will remain empty with probability 1−p. A connected group
of occupied sites is called a “cluster”. The size of the clusters clearly grows with
increasing p. “Percolation” is said to set in when the largest cluster extends from
one end of the system to the other (“spanning cluster”). In the limit of in�nitely
large lattices there exists a sharp threshold value pc = 0:59273 : : : for percolation. The
spanning cluster associated with this phase transition is a multiple-connected fractal
object with a power-law hole-size distribution. Fig. 1 gives an example of such a critical
con�guration which allows to traverse the entire lattice via next-neighbour steps.
Therefore, we have to distinguish between three qualitatively di�erent regimes de-

termined by the occupation probability:
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Fig. 1. Patchwork of occupied sites in the standard percolation model at criticality (p = pc = 0:5973 : : :).
The fractal spanning cluster is indicated in black.

(1) 06p61 − pc: the collection of occupied sites does not form any spanning
cluster, but the collection of unoccupied sites represents a connected “void space”.
(2) 1−pc ¡p6pc: neither the occupied nor the void sites form a connected struc-

ture.
(3) pc ¡p61: the collection of occupied sites does form a connected structure, but

the void space is now disconnected.
We introduce civilisatory land-use into our extended Daisyworld by gradually di-

minishing the potential growth area in the following way: choose a (small) generating
probability p0. In the �rst time step, consider all cells within the �nite lattice one
by one and exclude them from the growth space with probability p0. At time tn, the
probability that any speci�c site has been “civilized” is therefore given by

p(tn) = 1− (1− p0)n: (12)

On the other hand, the statistical fraction of habitable area after n time steps can be
calculated by

1− p(tn) = (1− p0)n : (13)
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Fig. 2. Convergence of numerical results for p–T relationship for increasing lattice size ranging from
200 × 200 (wiggliest line) to 1600 × 1600 (smoothest line). S has been �xed to a value that generates
a geophysical planetary temperature T0(S) = 35

◦
C.

Note that our fragmentation scheme is independent of the actual status of the cell
under consideration and all physical properties, such as di�usive heat transport remain
una�ected.

3.1. Self-stabilization of global temperature without herbivores

First, we test the decay of self-stabilizing power with increasing patchiness in the
2D Daisyworld without animals.
Fig. 2 summarizes our �ndings regarding the relation between global mean temper-

ature T and the percolation parameter p ≡ p(tn). It can be observed that even the
fragmented biosphere is able to stabilize the planetary temperature near the optimal
value, unless p exceeds a value of approximately 0:4.
The numerical results are robust. As a matter of fact, Fig. 2 shows for a series of

extensive calculations with increasing lattice dimensions that �nite-size e�ects can be
neglected. It actually turns out that the above-mentioned threshold value for patchiness
has universal character. The adaptive power of Daisyworld clearly breaks down when
p approaches the value p̂:=1− pc ≈ 0:407.
The explanation for this phenomenon is simple but illuminating: for p¿p̂ the

growth space has lost its connectivity and is broken up into many isolated domains. Our
toy model hence provides us with clear-cut evidence that the ecological performance
of a system directly depends on its connectivity! For detailed results concerning, for
example, the corresponding change in the species spectrum see again von Bloh [5].

3.2. The role of herbivores in a fragmented landscape

One of the main features of real-world ecological communities is their trophic com-
plexity as de�ned by the food-web structure [16]. By introducing herbivores into our 2D
Daisyworld, we are able to study the most simple non-trivial community case, namely a
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Fig. 3. (a) Dependence of global mean temperature T on fragmentation parameter p for distinct herbivore
mortality rates 
h. (b) Dependence of herbivore concentration on p for the same 
h values as in (a).

classical prey–predator situation. The well-known Lotka–Volterra theory does not apply
here, however, as the community strongly interacts with a heterogeneous environment.
The co-dynamics of plants and animals within our model world has been described

in Section 2.3 above. If we now “switch on” habitat fragmentation, both daisies and
herbivores are a�ected as more and more cells become inaccessible to growth and
grazing, respectively. For the sake of clarity, we keep the insolation S again constant
and study exclusively the impacts of denaturalization. Extensive numerical calculations
reveal that the crucial parameter is the herbivores’ mortality rate 
h. This is demon-
strated in Fig. 3a and 3b where the relationships between global mean temperature
T and fragmentation p and between herbivore concentration and p are depicted for
di�erent 
h values.
Four distinct “vitality regimes” can be identi�ed:
(1) 0:15. 
h: The herbivores rapidly die back and the remaining biosphere controls

the global temperature until the percolation threshold for the growth space is reached.
(2) 0:07 . 
h . 0:15: The homeostatic power of the co-existing daisy–herbivore

community is similar to the one exhibited by the daisy community alone. The concen-
tration of herbivores increases with decreasing mortality 
h.
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(3) 0:05 . 
h . 0:07: In this parameter domain the overall system’s behaviour
attains a new quality. When the fragmentation degree p grows beyond the approximate
value 0:2, an intermediate homeostatic situation emerges, where Topt¡T ¡T0 and
plants and animals co-exist at rather low population densities. Even more interesting
is the �nding that in the moderate fragmentation regime the herbivore concentration is
higher for higher values of the mortality parameter! This is in marked contrast to what
one would expect and what indeed happens in the homogeneous landscape.
Our interpretation is as follows: In a complex environment, the more vital herbivores

turn to “overgraze” their substrate. This behaviour produces additional negative e�ects
by raising the ambient temperature to uncomfortable values.
When the fragmentation approaches the �rst percolation threshold 1 − pc, the her-

bivores become extinct while the daisies still survive in reduced numbers. Then the
system’s behaviour is similar to the one of Daisyworld without predators.
(4) 
h . 0:05: Plants and animals die back rapidly with increasing p, and our

model world behaves like a desert planet for small values of the fragmentation pa-
rameter. Thus the unchecked vitality of the herbivores destroys the ecological balance
completely.
Our general �nding is that our herbivores can exist in a heterogeneous landscape

with albedo feedback only in a rather small regime of the mortality parameter 
h.
While daisies are able to survive in a fragmented growth space even above the �rst
percolation threshold, the “lattice animals” de�nitely cease to exist there. This re
ects
an observation encountered again and again in our studies: predators are more vul-
nerable to habitat fragmentation than their preys as the former depend heavily on
mobility.

4. Summary and outlook

We have shown that the fragmentation of species habitat has a signi�cant in
uence
on the homeostatic performance of the biosphere. A unique threshold can be identi�ed,
where the regulation of global temperature breaks down and “life” loses control of its
own subsistence conditions.
The introduction of herbivores to fragmented Daisyworld generates an extremely

rich eco-dynamics. For speci�c ranges of parameter combinations intermediate home-
ostatic regimes appear. Remarkably counter-intuitive e�ects prevail like the reduction
of herbivore concentration with increasing vitality. Thus our toy model demonstrates,
in a nutshell, the subtleness and vulnerability of community–environment relation-
ships.
Future work on this subject will focus on more realistic rules for animal motion

and replication. In particular, the self-restriction of herbivores by habitat fragmentation
through overgrazing can be simulated (“deserti�cation”). Another interesting option
is the simulation of civilizatory habitat fragmentation by more realistic processes for
urbanization and infrastructure expansion.
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