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Abstract

A model of a hypothetical zero-dimensional planet containing a global carbon cycle, which describes the
fundamental interaction between climate and biosphere, is used as a basis to formulate a new model incorporating a
hydrological cycle. Using the conservation law for carbon and water in the system the number of differential
equations is thereby reduced by two from five to three. The number and positions of the stable equilibria in the
three-dimensional phase space is determined using numerical methods. This numbers is related to the value of the
maximum productivity P,,,., the total amount of carbon A and water B in the system as bifurcation parameters of

the system. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

So called ‘minimal’ models (Moiseev and
Svirezhev, 1979) are a powerful tool in the de-
scription and analysis of the fundamental pro-
cesses and dependencies acting between geosphere
and biosphere. First attempts in this type of vege-
tation—climate modelling were carried out by Ver-
nadsky (1926) and then by Watson and Lovelock
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(1983) (‘Daisyworld’ as a model of some hypo-
thetical planet). Unlike other attempts of mod-
elling the global vegetation (e.g. the Osnabriick
biosphere model (Esser, 1991) or the Frankfurt
biosphere model (Liideke et al., 1995)) the system
can be fully understood through analytical and
numerical inspections.

In our first publication (Svirezhev and von
Bloh, 1996) we introduced such a minimal model
describing the climate-biosphere mechanisms of a
hypothetical zero-dimensional planet. The model
consists mainly of two coupled nonlinear differen-
tial equations, for the temperature 7 of the planet
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and amount of vegetation N. The following pub-
lication (Svirezhev and von Bloh, 1997) adds
to the proposed model a global carbon cycle
increasing the number of equations to three with
the amount of carbon in the atmosphere C as
the new state variable.

Analytical calculations of the coupled cli-
mate-biosphere system indicate that for the T,
N system up to two different stable equilibria
are possible (the ‘dead’ planet without any
vegetation and the ‘living’ planet with vegeta-
tion). For the system with a carbon cycle the
number of stable equilibria is increased to
three: the ‘living’ planet bifurcates into the
‘cold’ and ‘hot’ planet with vegetation. Further-
more it was shown that the number of stable
states depends on the bifurcation parameters A4,
the total amount of carbon in the system, and
P,..., the maximum productivity of the bio-
sphere.

According to the ‘virtual biospheres’ concept
(Svirezhev, 1994), the contemporary Earth bio-
sphere is one of many possible (virtual) bio-
spheres, corresponding to the multiple equilibria
of some nonlinear dynamic system ‘climate +
biosphere’. In the course of planetary history
and proper evolution this system has passed
through several bifurcation points, when ran-
dom perturbations determined on which branch
of the solution the system would appear. A
moving force of this evolution could be the
evolution of the ‘Earth green cover’, which has,
in turn, several bifurcation points, for instance,
the appearance of terrestrial vegetation and the
change of coniferous forest into deciduous
forest.

Adding an hydrological cycle on a conceptual
level to the model is a further step towards to
a full description of planetary evolution as a
sequence of bifurcations. Therefore the climatic
part of the model is modified to incorporate
cloudiness and ice albedo using a two layer ap-
proach for the albedo, while the biotic part has
to be extended by a water dependent productiv-
ity function. The extended model 1is then
analysed numerically in respect to the number
of stable equilibria and their sensitivity against
external perturbations.

2. Model description and basic equations

The climate of our hypothetical planet is de-
scribed by one variable, namely, the annual aver-
age temperature 7 of its surface. The planetary
atmosphere is an isotropic one with a total
amount of carbon in the atmosphere being equal
to C and a water vapour content W, in an atmo-
sphere column over a surface.

The equation for the globally averaged temper-
ature T described by a time dependent energy
balance equation is (Petoukhov and Ganopolski,
1994):

k%:S(l — o) — Ooe T — kW, )
where k is the surface heat capacity, S is the solar
radiation, « is the surface albedo,

Oeir = 00 C)ow(W,),
#c(0) = pw(0) =1, (2)

where ¢ is the Stefan-Boltzmann constant. The
‘greenhouse’ effect is represented by the functions
@c(C) and @w(W,), which are monotonous de-
creasing functions with saturation levels ¢ & and
¢ (see Fig. 1 and Fig. 2).

Good approximations for these are Michaelis-
Menten hyperbolas. The value ky, is the hidden
heat of evaporation. Finally, the -cloudiness
parameter ne[0,1] describing the relative cloud
cover over the planetary surface can be presented
in the form (Smagorinsky, 1960)

1

Phi

C

Fig. 1. Function, ¢ describing the greenhouse effect as a
function of the amount of carbon in the atmosphere C.
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Phi

w

Fig. 2. Function ¢y, describing the greenhouse effect as a
function of the amount of water in the atmosphere W,.

2g—1, if 05<¢g<l;
n= . 3)
0, if 0<¢<0.5
where ¢ is the relative humidity,
W,
= a_ 4
9= T 4)

W *(T) is the concentration of saturated water
vapour depending on temperature according to
the Clausius-Clapeyron law (e.g. Fleagle and
Businger, 1963) plotted in Fig. 3:

WH(T) = e17-638DIT+243.4) )
2.1. Albedo

We consider a planet, covered by vegetation,
with a ‘two-layer’ atmosphere. Clouds and the

T

Fig. 3. Concentration of saturated water vapour W as a
function of temperature 7.

underlying surface (vegetation and ocean, if in-
cluded in the consideration) reflect a solar radia-
tion, and ‘greenhouse’ gases transform it. The
albedo « in Eq. (1) is a function of

o=o(NnT,W), (6)

where N is the carbon content in vegetation, and
W, is the soil moisture (water in the soil). The
albedo depends on the cloudiness 7 in the follow-
ing form

o = no, + (1 - n)anc» (7)

where ¢, is the albedo of sky covered by clouds,
and o, is the albedo of a clear sky. Then

O = Uy + (1 - an)zusurf' (8)

Here the square arises because of a double
reflection of clouds and the underlying surface,
o, ~ 0.5 is the clouds albedo, g, is the albedo of
the underlying surface. Then

o, =0.54 0.2501 )
In the same way we have
Ope = %y + (1 - “a)zdsurf’ (10)

where o, is the albedo of the upper atmosphere
without clouds («, ~0.1). Then

e = 0.1 + 0.8y, (11)
And finally,
o=0.140.4n+ o, (0.81 — 0.56n). (12)

There is the problem concerning how to define
the value g, Since at a first stage we consider a
planet covered by snow and vegetation, without
ocean, then

Asurf = {}'(N)O‘b% + [1 - A(N)]O‘veg}(l _.fsn) + asnf‘sn'

(13)

Here o, is the albedo of snow (g, ~0.7) and
oy 18 the albedo of bare soil, so that

Olps = agsfbs( WS/W:k)’ (14)

where W¥ is the moisture of saturated soil. The
function f;, describing the fraction of land cov-
ered by ice has the following form (see Fig. 4):
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Fig. 4. Function f,, describing the share of land covered by
snow as a function of temperature.

| t<-15
fa=< 11— —15<r<15. (15)
0 else

Instead of using a step like function for the
albedo as in the Budyko model for glaciation
(Budyko, 1969) we use a continuous function. f,
is determined by (Fig. 5).

1 — ﬁs
W’
The function A(N)e€[0,1] represents the share of

land not covered by vegetation as a function of

the carbon content in vegetation N. It is a

monotonous decreasing function and is shown in
Fig. 6.

fbszl_Ws (16)

W /W’

Fig. 5. Function f,, describing the dependence of soil albedo
on its relative moisture.

lambda(N)

N

Fig. 6. Function A(N) describing the share of land not covered
by vegetation as a function of its amount N.

2.2. Equation of vegetation

The balance equation for carbon content in the
vegetation N is very simple:

ON
—=P—mN. 1
3 mN, (17)

where P is the function describing productivity
(annual net production) and m = 1/ty, where 1y is
the residence time for living biomass. In accor-
dance with the Liebig principle the productivity
(growth) function can be presented in the follow-
ing multiplicative form as in (Keeling, 1973):

P =P g1(T) 8c(C) gn(N) - gw(W) (18)

The factor P,,,, is the maximal value of produc-
tivity, when limiting resources are in abundance,
and other parameters have optimal values. The
possible forms of functions g, g¢, gn, and gy, are
shown in Figs. 7—10. Where g and gy are uni-
modular functions with one maximum which are
nonzero for a certain interval, while g- and gy are
increasing functions with saturation.

2.3. Global carbon cycle

The equations of the global carbon cycle are
identical to our previous model (Svirezhev and
von Bloh, 1997) with the total amount of carbon
in the atmosphere (C) and vegetation (N) as the
state variables:
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g(T)

Fig. 7. Qualitative form of the growth function g as a
function of the temperature 7.

6£__P+ N+ e(t

o mN + e(1),

ON

— =P —mN, 19

where e(¢) are the time-dependent (anthropo-
genic) emissions. If this value is relatively small in
comparison with A, then we have the conserva-
tion law for carbon in the form:

C(t)+ N(t) = A = const (20)

Therefore it is possible to replace C(z) by A —
N(t) and reduce the number of independent equa-
tions by one. For e(t) > 0, e(t) <« A we have some
sort of ‘adiabatic’ process.

gC)

C

Fig. 8. Qualitative form of the growth function g- as a
function of the amount of carbon in the atmosphere C.

g,(N)

N

Fig. 9. Qualitative form of the growth function gy as a
function of the amount of vegetation N.

2.4. Water (hydrological) cycle

In the same way we can write the balance
equations for water in the atmosphere (W,) and
soil (W) (note that we consider the planet to be
without ocean). Because the ocean is neglected the
change of evaporation of the ocean has to be
modelled as an external source for water.

oW,
= _H4+E t
5 + E+ q.(1),
oW,
WszH—E+qs(t). (21)

H is the precipitation and E is the evaporation
of soil and evapotranspiration of vegetation cov-

O 1 T
ow w

sy W sy

Fig. 10. Qualitative form of the growth function gy, as a
function of the amount of water in the soil W,.
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ering the soil. ¢, and ¢, are external sources and
sinks. If g, and ¢, are relatively small and change
quasistatically, then we have the conservation law
analogous to the carbon cycle for water in a form:

W,(t) + W{(t) = B = const. (22)

Therefore it is possible to reduce the number of
equations by one replacing W (t) by B— W,(2).

The simplest approximation of precipitation H
is given by a linear function of the product of the
water in the atmosphere W, and the cloudiness 7,
so that

H=v,Wn. (23)

The total evaporation E can be presented in the
following form:

E = J(N)Ey, + (1 — A(N)E, (24)

egs

where E, is the (physical) evaporation of bare
soil,

Ebs zjra(Ta Wa) WS/W?’
ST W) =WiT)—W,. (25)

Evapotranspiration by vegetation is supposed
to be a linear function of the productivity, so that

E..=vP. (26)

Thus we have the complete closed system of
differential equations for the description of ‘cli-
mate + biosphere’ dynamics. Due to the conserva-
tion law of carbon and water in the system it
consists of the three variables 7'(z), N(¢), and
W, (¢).

3. Parametrization

In order to simplify the calculations and allow
numerical simulations it is necessary to
parametrize the functional behaviour of ¢c, @,
A, g1 8c, &n, and gy presented in the following:

(1) ¢c and ¢. is parametrized according to
Mokhov and Petoukhov (1978). For ¢~ we have

Cd—9¢)

O)=1-
(pC() kC—I—C’

27)

Qw 18

1+ AwBy + W'V
(pW(W)_ 1+BWW/;W

The lower bound of ¢ow (W) is ¢y =1/B,,. The
share of land covered by vegetation as function of
the total amount of vegetation N is quantitatively
described by the equation

(28)

n
k,+n

AN)=1— (29)
(2) The parametrization of the growth functions
is done as described in our previous paper. Let

AT—T)T,— T)/AT? if Te[T,T,]
g(T) = {0 .

) it T¢[T,,T,],
(30)
where [T),T,] is the tolerance interval for vegeta-
tion, i.e. g(T) >0 for Te[T,,T5], AT=T,— T,
i.e. the length of this interval. The function is a
unimodular one with one maximum at 7T,, =
(T, + T,)/2. The two functions gc and gy can be
merged to one function Gy (N)=g4—
N)-gn(N). Because go(4 — N) is a monotonous
decreasing function, while gy (N) is an increasing

one, the product is a unimodular function:

4
Gu(N) =5 N(4 = N). 31)

For the growth function in dependence on the
amount of water in the soil we propose a unimod-
ular function similar to that for gi:

gw(W,) = {‘“Ws — W) (W — WA,

lf Wse[Wsla VIVSZ]

lf Ws¢[Wsla WSZ]
where [ W, W,,] is the water tolerance interval for
vegetation and AW =W, — W,,.

A list of all parameter settings is summarized in
Table 1.

(32)

4. Model results

Despite of the simplicity of the proposed cli-
mate—biosphere system, an analytical solution is
not possible due to the nonlinearity of the under-
lying feedback mechanisms acting between the
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Table 1

Model parameters and their corresponding units for real Earth scenario

Parameter Value Units Parameter Value Units

S 340 W/m? k 3-107 J/m?K
p 5.67-10-8 W/(m2K?) oo 0.4

Lyeg 0.1 ol 0.4

0E 0.6 k. 750 Gt

k, 600 Gt k, 600 Gt

Ay 0.01 By 2.258

B 0.409 T, 5 °C

T, 40 °C A 1360 Gt

m 0.08 1/year I 0.5

v, 70 1/year Vyes 0.7 g/(cm>Gt)
/49 7.0 g/cm? w! 1 g/cm?
w? 18 g/cm? P 200 Gt/year

climate and biosphere. Therefore numerical solu-
tions of the system are carried out in order to
determine possible equilibria of the system.

Due to the different time scales ty, tr, ty for W,
T, and N with

tw < tr <ty (33)

the system must be solved numerically by an
integrator for stiff systems. In order to get a
visual impression of the system’s behaviour phase
portraits can be used. A projection of the three-di-
mensional phase curves onto the 7, N domain
eliminating the W variable as the fastest process
yields two-dimensional phase diagrams. These
two-dimensional phase portraits of the {7,N} do-
main for fixed total amount of water B are plotted
for an increasing total amount of carbon A in the
system (Fig. 11a—d). Depending on the value of
carbon A4 up to three equilibria are stable. The
system bifurcates in dependence on A into differ-
ent phase space topologies which are character-
ized in the following:

1. For low values of 4 in the system (see Fig. 11a)
only one equilibrium N* = 0 is stable. Indepen-
dent of the initial conditions in the {N,T}
domain vegetation dies out exponentially and
the cold desert is reached, ice finally covering
the planet.

2. For higher values of 4 (Fig. 11b) the behaviour
slightly changes: one equilibrium is stable as

before, but a finite interval in time of occurence
of vegetation covering the planet exists. Be-
cause the vegetation extracts carbon out of the
atmosphere the planet cools down and glaci-
ates completely at the final stage.

3. Above a critical value of A three stable nodes
appear (Fig. 11c): one equilibrium (i) with
N*=0 corresponds to the cold desert, while
the other two with N* > 0 are stable nodes (ii)
(N¥,T%) and (iii)) (N%,T%) with N¥ > N¥ and
TF < T%. Equilibrium (ii) can be identified by
the ‘cold’ planet, and (iii) by the ‘hot’ planet,
respectively. Due to the topology of the basins
of attraction a decrease of temperature in equi-
librium (ii) forces a glaciation of the planet and
the cold desert with N* =0 is reached. A slight
decrease in vegetation, however, is followed by
a drastic change in vegetation and equilibrium
(iii) is reached. These two possible scenarios
can be realized by, e.g. natural disasters, like
volcanic eruptions or meteoritic impacts.

4. By increasing A4 the configuration is again
changed. The stable node corresponding to the
‘cold’ planet disappears and two stable states
(i1) and (iii) are obtained. If the carbon in the
system is further increased, vegetation becomes
completely extinct and the state of a ‘hot’
desert is reached.

Taking P..., 4, and B as the bifurcation
parameters a bifurcation diagram can be numeri-
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Fig. 11. Phase portrait in the {7,N} domain for fixed B (B=10) and different 4, (a) 4 =750, (b) 4 =1500, (c) 4 =2950, (d)
A =3000. The basins of attraction are marked by different grey shadings.

cally estimated by counting the number of stable
equilibria for different settings in the P, 4,
and B parameter space. Fig. 12 shows the result
for fixed P,,, in the {4,B} domain.

5. Conclusion

Starting from a very simple global carbon cy-
cle model the proposed climate-biosphere system
exhibits some interesting features concerning the
stability and sensitivity to external or internal
perturbations of the global system. A decrease

of temperature or vegetation will force a new
equilibrium with significantly lower vegetation
or even a glaciation of the whole planet. The
number of stable states of the bioplanetary sys-
tem depends on maximum productivity P, as
a biological factor and the total amount of wa-
ter and carbon in the system.

Future work will emphasize the determination
of transition times between the different equi-
libria due to random perturbations. Incorpora-
tion of a ocean model into the hydrological
cycle will improve the validity of the conceptual
model.
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Fig. 12. The number of stable equilibria as a function of total
amount of carbon 4 and water B in the system. P, is fixed.
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