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Abstract

The mechanisms of interaction between climate and biosphere are studied for some hypothetical zero-dimensional
(point) planet, where all parameters are globally averaged over the two-dimensional surface of the planet, which is
without ocean. These mechanisms are formed by two causal loops: vegetation — albedo — temperature — vegetation
and vegetation <> atmospheric carbon — temperature — vegetation with a strong non-linear interaction. Using the
conservation law for the total amount of carbon in the system and taking into account the assumption about
quasi-stationary evolution of the system under anthropogenic CO, emission, we reduce the dimension of the basic
system of differential equations to two. The reduced system is then studied by qualitative methods. The system can
have up to five equilibria, three of them can be stable. Here there are two bifurcation parameters: total amount of
carbon (A) and product of maximal plant productivity and residence time of carbon in the biota. Considering the
system evolution under increase of A, we can observe the change of the planet ‘status’ from ‘cold desert’ to ‘green
cold planet’ (first bifurcation), then a ‘tropical planet’ arises (second bifurcation), and, as a result of further increase
of carbon in the system, the planet transforms to a ‘hot desert’. In conclusion the model was calculated for
‘quasi-Earth’ values of parameters. © 1997 Elsevier Science B.V.
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1. Introduction

In our first publication (Svirezhev and von Bloh, 1996) we formulated the following questions:
e How does the ‘Biosphere machine’ operate?
e Is our Earth Biosphere unique or could, maybe, other, virtual biospheres exist?
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In this publication we continue to answer these questions, considering the system ‘biosphere + climate’
as a system with very strong non-linearities and multiple equilibria. Note that we remain within a
framework of the simplest zero-dimensional models. The results obtained by the analysis do not depend
on the explicit form of the chosen functions and can be generalized to a system obeying the same
topological structure.

It is obvious that vegetation dynamics depend on temperature, precipitation, and the concentration of
carbon in the atmosphere. On the other hand, temperature dynamics depend on the concentrations of
carbon and water vapour in the atmosphere, and on the albedo of planetary surface. For instance, the
albedo of ‘white sands’ desert is equal to 0.4; for coniferous forest it is about 0.1 (Robock, 1980). Our
model includes the following simple submodels: global carbon cycle, vegetation and the equation for
annual global temperature.

A few words about the history of this problem. Kostitzin (Kostitzin, 1935) realized Vernadsky’s
(Vernadsky, 1926) idea about an interdependence between vegetation and climate in the form of a
mathematical model for the coevolution of the atmosphere (climate) and the biota. It is interesting that
this was the first mathematical model of a global carbon cycle. His ‘epoques glaciers’ act as self-oscilla-
tions of this system. Further attempts at the modelling of climate-vegetation interactions were made by
(Watson and Lovelock, 1983) (Daisyworld, a model of a hypothetical planet). In 1994 the so-called
‘virtual biospheres’ concept was formulated (Svirezhev, 1994). According to this, the contemporary Earth
Biosphere is one of many possible (virtual) biospheres, corresponding to multiple equilibria of some
strongly nonlinear dynamic system ‘climate + biosphere’.

In the course of our planet’s history and own evolution this system passed through several bifurcation
points, when random factors (small perturbations) determined which branch of the solution the system
would take. A moving force of this evolution could be the evolution of the ‘Earth green cover’, which has,
in turn, several bifurcation points, e.g. the appearance of terrestrial vegetation and the change from
coniferous to deciduous forest.

Note that this concept contradicts Vernadsky’s ‘ergodicity axiom’, according to which the contempo-
rary Earth Biosphere is unique, beyond dependence on its initial and previous states.

2. The model: formulation and simplification

The proposed model is called the simplest model because it contains the minimal set of state variables
to realize a global vegetation model incorporating the global carbon cycle. The climate of our hypothetical
planet is described by one variable, namely, the annual average temperature of its surface. The planetary
atmosphere is an isotropic one, containing one ‘greenhouse’ gas-CO,-with carbon concentration C(¢). The
equation for temperature will be (Goody, 1964, Petoukhov, 1995):

kT=S(1—-a)—ocp(C)T* .1

where k is the surface heat capacity, S is the solar radiation, « is the surface albedo, and o is the
Stephan-Boltzmann constant. The ‘greenhouse’ effect is described by the function ¢(C), which is a
monotonous decreasing function with saturation for C— o0: ¢(C)— ¢ o0, ¢(0)=1. A good approxima-
tion is a hyperbola.

We consider the ‘point’ planet to be without ocean, covered by vegetation with the density p (in carbon
units per unit surface). If T is the total area of the planet, then N = pZ is the total amount of carbon
contained in the vegetation. (Without loss of generality we can put Z =1).

As in the previous model we assume that the albedo o depends on the density of vegetation N, so that
« is a monotonous decreasing function of N (see Fig. 1).
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We include in the model the simplest two-compartmental submodel of the global carbon cycle, when
the total carbon is allocated to the compartments: atmosphere and biota (vegetation), with corresponding
concentrations C and N.

The equation for biota is:

dN

T P(C,N, T)—mN 2.2)
where P is the annual net-production of vegetation, m is the value which is inverse to the residence time
of carbon in the biota, t,.

The equation for atmospheric carbon is

dC

Frinl P(C,N, T)+mN + e(t) (2.3)
where e(¢) is the annual anthropogenic emission.The total amount of carbon A(¢) = C(t) + N(¢) has the
following evolution in time:

d4 dC dN

kel Rt N 2.4

TR TIAT e(t) @9

and integrating the equation one obtains

A(t) = C(t) + N(t) = A, + j e(r) de 2.5)

to
where 4, = C(t,) + N(t;). Using the equality to exclude the variable C(¢) from the Eq. (2.2) and Eq. (2.3),
we get

dT 1

5 =7 YW = 09 (4() — N)T*]
dN (2.6)
a =P(A(t)—N,N, T)—mN
where
Y(N)=S(1 —a(N)) 2.7

Fig. 1. Albedo  as a function of the carbon mass in the vegetation N.
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Fig. 2. Function g,(T) describing the dependence of productivity on temperature 7.

The system is the simplest model of the biosphere of our hypothetical planet. Due to the explicit time
dependence of A(¢) it is a non-autonomous dynamical system. If we suppose that A4(z) changes
quasi-stationarily with ¢, i.e. is a slow process in relation to 7 and N then

dA(2)

T e(t)y < A1) 2.8)

Therefore we analyse the stationary solutions of the system with A4(¢) = 4.

2.1. About the productivity function P(C, N, T)

The productivity of the vegetation is a function of C, N, and T alone. As in Keeling (1973) we assume
that the productivity function P(C, N, T) can be presented in the multiplicative form (accordingly with
Liebig’s principle):

P =Pgr(T)gc(C)gn(N) 2.9)

where P_, is the maximum productivity of the vegetation and g, gy are functions: R=°—[0, 1]. Here
g~(T) is a unimodular function: R — [0, 1] (see Fig. 2), according to (Liideke et al., 1995); the function
g2-(C) is a monotonous increasing function with saturation (see Fig. 3).

The function g,(N) is a monotonous increasing function, tending to one when N — oo (as in Fig. 3).
Since C= A — N then the product g.- gy can be presented in the form Gy(N) for fixed A(¢) (see Fig. 4).

9.(0)

C

Fig. 3. Function g(C) describing the dependence of productivity on carbon content C in the atmosphere.
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6,(N)

Fig. 4. The function Gp(N)=g-(4 — N)-gy(N) as a function of N.

The function G, is a unimodular function where G,(0)= Gy(4)=0. It is defined in the interval
Nel0, 4].

2.2. About the function ¥(N) and ¢(A — N)

The function ¢ = @, as a function of N, will have the following form (see Fig. 5). Analogously to the
Daisyworld model by Watson and Lovelock, the vegetation cover changes the albedo « of the planet. We
suppose that the surface albedo decreases with an increase of vegetation. In Fig. 6 the functional form of
Y(N)= S(1 —a(N)) is plotted.

In order to detect the equilibria we shall need the function ®(N) ="¥(N)/@(4 — N). It is obvious that
®(0) = 5,/¢,, where s;=S(1 —a,), and ®(4)="V¥(4)/p(0)="¥(4). If (In ¥)y=(In @)y at some point
N_€[0, A], where the expression f’y is defined as

r __a_
f”‘aNf (2.10)

then ®(N) has a maximum at N_, (see Fig. 7).
If N> A then ®(N) is a monotonous increasing function, and if N, <0, ®(N) is a monotonous
decreasing one.

phi(N)

Fig. 5. The function ¢(C) = ¢(4 ~ N) (considering the greenhouse effect in the model) as a function of N. The value ¢(4)= ¢,
corresponding to zero value of N, is determined by the value 4. Since we shall consider this function as a function of N:¢ = ¢(N),

then ¢, = ¢(0).
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Psi(N)

N
Fig. 6. The function W(N) = S(1 — a(N)) considering the solar irradiance: s, = S(1 — «;), 5, = S(1 — a,).

2.3. Equilibria

The equilibrium points for the system Eq. (2.6) and Eq. (2.7) are determined by

3 W(N*) 1/4— D(N*) 14
T*_{ago(N*)} —{ . } (2.11)

and by solutions of the equation:

gr(T*)Gn(N*) = g’— N* (2.12)

m

Since Gp(0) =0 we present Gy in the form: G = f(N)N, where lim,, _,, f(N) =f(0) < co.
Then

N*=0, T*=T,= {%%}M 2.13)

is one equilibrium. Since N* = 0 this equilibrium corresponds to the ‘naked’ planet, i.e. desert, when no
vegetation exists and all carbon is in the atmosphere.
The other equilibria are the solutions of the system of Eq. (2.11) and the equation:

m 1

gT(Tk)=P_,,,f(TV*—) (2.14)

Fig. 7. The function W(N) = W(N)/@(N); at the point N, one gets ¥' =0, or (In ¥)y = (In ).
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It is obvious that T*e(T,, T5).
2.4. The cycles

Let us prove, using the Dulac criterion (see (Hale and Kocak, 1991)), that there are no cycles among
the solutions of the system Eq. (2.6) and Eq. (2.7). Note that fy(N) < 0.
Since the expression

df11 d
D= aT{Nk[‘I‘(N)—afp(N)T“]} { [P,.gr(T)(N)N — mN]}

= — 40T fk(_lj\\/’z + P, gAY n(N) (2.15)

is negative for any T and N which belong to the interior of the positive quadrant, then the system Eq.
(2.6) and Eq. (2.7) does not have any closed trajectory.

2.5. Stability analysis

After linearization of the system Eq. (2.6) and Eq. (2.7) in the vicinity of the equilibrium points, we get
the Jacobi matrix:

— 4P(N*) [lr\P(N*)]' W(N*)
J= kT* o(NY) vk (2.16)

P NSNHgATH]r Pgr(TH{fIN*) + NYfH(N*)} —m

Let us consider the point {N* =0; T§}. Then

— 49(0) [IF‘P(O):" ¥(0)
Jo= | KkT% 00) v K Q.17

0 P g (T*)f(0) —m

and the corresponding eigenvalues are equal to:

—4¥(0)
kT*

>0; = P,g(T*)(0)—m (2.18)

1=

i.e. this equilibrium is a stable node, if

T < (2.19)
gr(T?) » f(O)
and it is an unstable saddle, if
gr(TE >—— (2.20)

mf ©)
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Since g(T) =0 for any T¢(T,, T), then 4, = —m, and any equilibrium {N* =0, T}¢(T,, T,)} is stable.
If N* #0 then

— AP(N*) ¥ {m PN
J= kT* k1 o9y

mN*{ln g (T*)}7 mN*{In f(N*)}y

2.21)

and the corresponding eigenvalues are equal to

4y , 4y P 4¥mN A2
Aa=1% { - (k—T —mN(In f)N> + \/ [k—T +mN(ln f)N] +——(n gT),(ln 5>~} (2.22)

Since (In /)y <0 for any N < 4, then 4¥/kT — mN(In f), > 0 and the equilibrium with N* £ 0 cannot
be an unstable node.
This equilibrium is a saddle point if

\y ’
F(N*, T*)= (ln ;) (Ingr)m+4(n fY(ln T),. >0 (2.23)
N‘
If F(N*, T*) <0, we have a stable node or stable focus, moreover for the latest
P 4¥mN , '
I:ﬂ + mN(an)N] + I: i (ngy)r (ln X) :I <0 (2.249)
kT TN k /N e Ne

3. Parametrization

In order to make our investigation simpler and more visual, we use parametric presentations for
functions W(¥), ¢(N), and f(N).

Let
=1—-— 3.1
@(C) k+C G.1)
and substituting C by C=4 — N, we get (see Fig. 5)
k.+ ¢ (A—N)
——¢ T 3.2
@(N) k,.+A—N (32)

A good approximation for W(N) (see Fig. 6) is given by the function:

(s, —s)N sk, + 5N
_ - 33
YN =si+ 2N =¥ N (3-3)

Then

Y(N)  (sik,+s:N)k.+A—N)

N =)~ kot Nko + 9od — 9V

(34)
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or
®(N)=—s2-— (a‘+N)(/;c+A—N) (3.5)
Peo (ka+N)((p‘ +A~N)
Let
A T—T)T,-T), Te[T,T
gr(T) =< AT Tz = 1), iTelT,, Tl (3.6)

0, if T¢[T,, T,

where [T, T5] is the tolerance interval for vegetation, AT =T, — T, i.e. the length of this interval. It is
obvious that T, = (T, + T,)/2 and g(T,,) = 1.

For parametrization of f(N) we must remember that f(N) = G5/N. Because Gy(N) can be described by
parabola

4
Gy= VE N(4—-N)
and, respectively,
4(4—N)
VE
Using this parametrization we can investigate the evolution of the phase plane with an increase of the
bifurcation parameter A4.

fIN)= (3.7

3.1. The behaviour of ®(N,A) as a function of A

Since N < A4 then for 4 —0 we have

(A4=0)=3s, (3.8)
Let us detect the point N, where @ =0. Since
1 1 1 1
=0 - - - 3.9
d)N {(Slka/s2+N kc+A_N) (k1+N kc/q)o: +A—N>} ( )
then N_, is determined from the equation:
1 1 1 1
= 3.10
skt N koot A—N kR +NTkFA-N (3.10)
It is easy to show that for a large A this equation has the solution N_,€(0, 4). The derivative
00 _ 5 sik./s; + N k(1—9.) _ okl —9y) 1
aA—(poo ka+N (poo((kc/(poo+A)A+kc/(poo-N)2 P (kc+A'—N)(kc/(poo+A_N)
>0

and the second derivative 0?®/042 < 0. Since

1 1/4
T* = {— (D(N*)}
g
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Fig. 8. The carbon mass in vegetation in equilibrium N as a function of equilibrium temperature T and the total amount of carbon
A in the system. For 4 > A . = 1/f equilibrium with N =0 exist alone.

then T*(A) is a growing function of 4 for any N*.
3.2, Equilibrium N* > 0 as a function of gy and A

The equilibrium N* >0 of the system is determined by the solution of Eq. (2.14). For T[T, T,] we
have

_m A?
8= P, 4(A—-N)
or
mA 1
N=A4{1—— 3.11
{ ap, grm} G1D
where gr= (4/AT>(T — T,)(T, — T). It is obvious that N < 4. Since N >0 then
m

ie. N*>0 only within the interval (T, T), where

N N
gr(TY) =g(T?) 2P

It is interesting that the interval is reduced to a point, i.e. T = T5, if fA4. =1, where f is defined as

_ m
" 4P,

It is obvious that, if 4 > 4., = 1/8, N* >0 does not exist, and there are the solutions N* =0 and T*
alone. In Fig. 8 the different N(T), corresponding to different values of 4, are shown. The maximum of
N in respect to T is N,,(4) = max, N = A(1 — fA4). It is obvious that max, N, = 1/48 and it reaches that
point at A* =1/28 = A /2.

Let us remember the stability condition for the equilibrium {N*=0; T§} (see Eq. (2.19) and Eq.
(2.20)). Since f(0) = 4/4 then from Eq. (2.19) it follows:

(3.13)

m
—A 3.14
<4Pm (3.14)
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i.e. this equilibrium is stable, and if

m
gr>4——PmA (3.15)

it is unstable.

Let us compare these expressions to Eq. (3.12). Hence, this equilibrium is always unstable, if
T3e[T), T3], and it is stable if T*¢(T), T5). It is obvious that for 4 > 4. the unique equilibrium
{N*=0, T¥} exists and is stable.

3.3. The ‘naked’ planet

This equilibrium is the equilibrium of the ‘naked’ planet. Let us consider it in detail.
If T*¢(T, T,), i.e. the equilibrium temperature lies outside the tolerance interval for photosynthesis,
then this equilibrium is always stable. If T#e(T,, T,) then the equilibrium is stable, if

m _"y
P,f(0) 4P,
or

1 m
gr{ ! ;<1>(0)} < 4——},mA (3.17)

Suppose the reciprocal operator g~! exists, so that

JPO)  fm
20, {Z;;A} (3.18)

Since

gr(T3) < (3.16)

®(0) = Sd=a) (3.19)
A
then the left part of Eq. (3.18) depends only on the characteristics and total amount of carbon in the
system. The right part of Eq. (3.18) depends only on the biotic characteristics of the planetary vegetation
and also the total carbon. If we assume that the equilibrium temperature for the ‘naked’ planet is fixed-the
total carbon is fixed also-but we can change (e.g. in an evolutionary way) the vegetation characteristics,
then we can pass from a stable ‘naked’ equilibrium to an unstable one.

Let us consider Fig. 9: from this picture we can see that the condition T3 €[T,, T,], i.e. the condition
that the equilibrium temperature belongs to the photosynthesis tolerance interval, is not sufficient in order
to pass to the instability of a ‘naked’ equilibrium, i.e. for the ‘origin of life’. It is necessary that the
temperature T3 (T, T3), then the ‘naked’ equilibrium becomes unstable and ‘life’ can occur. This interval
depends on such biotic characteristics as the residence time of carbon in the biota (r=1/m) and its
maximum productivity P,,. We call the interval (T}, T5) the ‘vegetation tolerance interval’.

Let us consider the change of the product f4. Its increase, which corresponds either to the decrease of
carbon residence time in the biota or to a decrease of the maximal productivity of photosynthesis, leads
to a reduction of the vegetation interval. And, vice versa, the decrease of f4, because of the increase of
residence time or increase of maximal productivity, increases the vegetation interval.

It is obvious that if #4 > max; g, = 1, then the ‘naked’ equilibrium is stable for any T, and life cannot
arise in the vicinity of this equilibrium. In other words, there is some critical combination from P,,, m (or
7), and A:
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p,A
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o
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' -y
0.7_ :N =0 unstable for plA:
i ‘
B A —— T
:N'=O unstable for Al
) ‘

0 t + + y
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o

Fig. 9. To the problem of stability for ‘naked’ equilibrium: in the interval [T, T3] with g < §,4 it is unstable ([T}, T3] or §,4).
For 84 =1 this interval is reduced to a point, above 1 the equilibrium is stable for any 7.

mA 3.20

4P, (3:20)
or

A<4P,1 (3.21)

On the other hand

-5 )

is the monotonous increasing function of A4, since ¢ , monotonously decreases with the growth of A. Since
@4 @, = const, then TE(A) = (T¥).x = const, if 4— oo,
In fact there are two bifurcation parameters: § and A. Note that T#(4) — (T¢)min, if 4 —0, where

(T = Y2 6.2

since p(4=0)=1.
Let us assume that (T¥),.in < T, and (T¥)mex > T, then we have the stability diagram as in Fig. 10. The
border in the (8, A) domain is determined by the function

0-
0
A

Fig. 10. Stability border for N* =0 in the {f, A} domain: g, (T3)=BA, T¢=T4§(A4). The shaded area indicates the area of
instability of N* =0 where life can arise in the vicinity of the ‘naked’ equilibrium.
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Fig. 11. Phase portraits for increasing 4 and fixed T§. (a): ‘cold desert’ and ‘cold” planet are stable equilibria, (b) ‘cold desert’, ‘cold’
and ‘hot’ planet are stable, (c) ‘cold desert’ and ‘hot’ planet are stable. Curve I: 7* = YP(N*)o, and II: N* = A(1 — A /[g(T*)).
The different shaded areas denote the basins of attraction.

gr(T8A4)) _ gr{(T8umin// ©4)
A A

whereas for f < f... the ‘naked’ equilibrium is unstable.

Beril(4) = (3.24)

4. About the numerical estimation for model parameters

Based on the analytical analysis, the system is analysed numerically in respect to the positions and
number of stable equilibria. Phase portraits showing trajectories in the {7, N}-domain give a visual
impression of the system behaviour. The equilibria of the system are easily obtained by plotting the two
functions I: T* = {®(N*)/c}* Eq. (2.11) and IL:N* = A(1 — fA4/g(T*)) Eq. (3.11) and determining their
intersection points in the phase space. The maximum number of possible equilibria is restricted to five,
because both functions I and II are unimodular ones and therefore intersect at a maximum of four points
in {T, N}. Together with the ‘naked’ equilibrium one gets five as an upper boundary for the number of
stationary solutions.

For a certain set of parameters we have a phase portrait as in Fig. 1la: two of the three possible
equilibria are stable, the ‘cold desert’ with N=0 and the ‘cold’ planet with N >0. The unstable
equilibrium separates the two basins of attraction. If 4 is increased, but T is fixed, the phase portrait
changes according to Fig. 11b, where three stable equilibria exist (‘cold desert’, ‘cold * planet, and ‘hot’
planet). A further increase of 4 reduces their number to two (Fig. 11c).

Since we would like our planet to be similar to the earth, we shall use real values for estimation of the
model parameters.
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It is known for earth that S'= 340 W/m? k =1 — 2 x 107 J/m? per K for land and k = 20 x 107 J/m? per
K for ocean. Since our planet has no ocean, without loss of generality, we can put k=3 x 107 J/m? per
K. The time step of the model is equal to 1 year ~ 3 x 107 s, then k ~ 1 in the corresponding units. The
albedo for ‘naked’ earth (white sands) is «, ~ 0.4, and for ‘green’ earth «, ~0.1 (Robock, 1980).

About the role of atmospheric carbon: the ‘greenhouse’ effect. In agreement with (Petoukhov, 1995),
¢, =0.6 and k, =355 ppm or k.= 750 Gt, so that

0.4C
750+ C

if C is measured in Gt. Note that ¢ = 5.67 x 10 ~5[W/m?K*].
The temperature of the ‘cold desert’ for earth is determined by

T = 4/@ = \‘/‘%‘ ~ —28°C (42)

Here s, = (1 — ;)S. On the other hand, the contemporary temperature is 7* = 14°C. Note that in this
case the mean albedo aq=10.3, so that s, =238 W/m?, and the equilibrium temperature for a planet
without atmosphere would be

(TAY = \‘%%z —18.5°C (4.3)

Containing CO, and H,O, the atmosphere increases the temperature (the ‘greenhouse effect’). This
increase can be obtained as a result of the reduction of the coefficient o; when we introduce some
‘effective’ o denoted as o

o' =0 AC)pu(W)o 4.4)

where ¢(C) is a decreasing function, taking into account the role of CO,, ¢ (W) is the similar function
for water vapour with concentration W. Obviously, ¢(0) = ¢4(0) = 1. For C =610 Gt the corresponding
value is ¢-=0.75.

If we neglect the water vapour contribution, then

” 4 SO o
Ty = 40 _~0.
(T3) \ 0.75¢ ¢

just as the real temperature is 7* = 14°C. It shows that this contribution is very important, and we must
include it in our consideration (in some implicit changing ¢). From this condition

P(C)=1~

4.1)

So

(287 K)* = 0750 (Mo 4.5)
we get ¢y, = 0.825, and ¢’ =0.75 x 0.825¢. But only considering CO, in the atmosphere, then

o' = p(C)o”
where

c" =4.68 x 10~ W/m*K* (4.6)

and

S

(TY = 4 - 16°C = Tk, 4.7

”



Y.M. Svirezhev, W. von Bloh / Ecological Modelling 101 (1997) 79-95 93

Since
ky+uN k. +C
O(N) = (Tr, ) — <
where y = s,/s, = 1.5, then
DN
T — 47(;T)>m" (4.9)

We assume that the contemporary state of the biosphere is an equilibrium.

We consider the current productivity of the biosphere as the equilibrium one. Here and hereafter we use
the data from (Krapivin et al., 1982).

The ‘soil’ compartment was omitted in our model. Its influence can be described by an increase of the
residence time of carbon in the biota. On the other hand, the relatively large part of dead organic matter
( = 60-65%) is returned very rapidly to the atmosphere. For this reason, as an initial approximation, we
can forget about the ‘soil’ compartment and consider the following estimations:

N* =750 Gt,

P* = 60 Gt/year,

A* = N* + C* = 1360 Gt,
m= P*/N* ~0.08 1/year

(4.10)

so that the residence time of carbon in the biota is equal to 12.5 years.
The tolerance interval for photosynthesis is [T, = 5°C, T, =40°C], and T, ~ 23°C (for a parabolic
approximation of the growth function).Since 7* = 14°C, then

4

g’;z(TT—)E(TQ— T*YT* — T)) ~0.764 4.1
And from
4
G‘1§,=(A*)2N*(A*—N*)=O.99 (4.12)

we get P, = P*/(G¥%g*%) ~ 80 Gt. And, finally, from

m —4
= 4Pm—2.5 x 10~%1/Gt (4.13)
we get A, =1/8=4x10° Gt.

We have for our planet: 4 = 1.36 x 10°> Gt < 4, i.e. the total amount of carbon is less than three times
compared with its critical value and equilibria with N* > 0 can exist. Remembering the formula for ®(N),
we can test the value 7*. It is equal to 14°C (for k, = 600 Gt). And finally we must note that all values
N, C, etc. are measured in Gt (10° tons).

Fig. 12 plots the phase portrait corresponding to the parameter setting for earth summarized in Table
1. The phase portrait is similar to Fig. 11a, where two equilibria (the cold desert and the cold planet with
vegetation) are stable for the given A. But note that for the present state of the earth the planet without
vegetation N* = 0 for any T is stable preventing life arising from the ‘dead’ planet state. Leaving the basin
of attraction of N* > 0 by, e.g. perturbation of N to a value below a critical threshold leads to a complete
extinction of vegetation on earth.
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Fig. 12. Phase portrait for the system with parameter settings according to real earth scenario.

5. Conclusion

The presented climate-vegetation model including a carbon cycle shows some interesting features: the
performed stability analysis of the equilibria of the system give us up to three stable points. Depending
on the initial condition of our planet, the ‘cold’ desert without any vegetation will be stable, the ‘cold
planet’ with a large amount of vegetation will exist, or a ‘hot’ planet with a small amount on vegetation
compared with the cold planet will be reached. The initiation of life on our virtual planet depends on the
value of two bifurcation parameters, the total amount of carbon A in the system and a combination of
biotic characteristics # of the vegetation.

The stability of the different stationary states can be dramatically changed if we increase the total
amount of carbon by, e.g. anthropogenic emissions. It is possible that the cold planet becomes unstable
and a new equilibrium such as the hot planet is realized. Such a transition forces a drastic decrease in the
vegetation of the planet.

In a next step we will introduce a water cycle into the model. This will increase the number of
bifurcation points of the planet. A second goal is the determination of transition times from one stable
equilibrium to another due to stochastic perturbations of the system.

Table 1

Model parameters for real earth scenario

Parameter Value Units
S 340 W/m?
k 3Ix 107 J/m? K
o 5.67x 108 W/m? K*
o, 0.4

oy 0.1

@0 0.6

ke 750 Gt

ky 600 Gt

T, 5 °C

T, 40 °C

A . 1360 Gt

m 0.08 1/year

P, 80 Gt/year
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