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Abstract

A so-called “*minimal model’” is presented for the qualitative description of the interaction between climate and
vegetation. Such conceptual simple models are important to give a better understanding of the fundamental feedback
mechanisms acting between geo- and biosphere. This spatially one-dimensional model is analyzed in respect to the uniform
biosphere and the existence of possible diffusive instabilities. It is proved that there do not exist any non-uniform
equilibrium solutions, but the evolution of non-uniform initial perturbations is quite interesting: depending on the spatial
form of the perturbations propagating non-linear waves are observed.
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1. Introduction

Today climatic change is a much debated topic: there is a huge amount of publications, which grow faster
than exponential curve, speculations, etc. which mask (very successfully) on one simple fact: we hardly
conceive ourselves how the ‘‘Biosphere machine’ is operating. Therefore the role of simple (and simplest)
models, so-called ‘‘minimal models” (Moiseev and Svirezhev, 1979) can be very helpful, if they are
sufficiently simple for understanding and possess a significant amount of the qualitative properties of the
investigated system.

The analytical as well as the numerical analysis of such a conceptual model for description of the interaction
of climate and vegetation is the aim of our paper. The first attempts in this type of vegetation—climate modelling
were done by Vernadsky (1926) and then by Watson and Lovelock (1983) (‘‘Daisy-world”> as a model of some
hypothetical planet) and extented to 2-dimensional structures (Schellnhuber et al., 1993).

The paper is organized as follows: firstly we will give a description of the vegetation—climate model, then an
analysis of the uniform biosphere and of possible diffusive instabilities is presented. Finally the progagation of
waves in the spatial model is analyzed in respect to the dependence on the initial conditions.
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2. The model description

We suppose the climate of our world is determined by the temperature T(x,1) only, and the dynamics is
described by the equation

oT °T
C—=k—
at dx~

where () is the world “*area”, A is the albedo of planet surface at a given point x, S is the solar constant, so
that the term S(1 — A) is the insolation, and the term & T* (where & is the Stephan—Boltzmann constant) is the
erradiation. The latters can be presented in the Budyko’s form (Budyko, 1969) also: a + bT, but it is not
principally. The Budyko form together with the empirical constants a, b would give us a better agreement with
the real radiation data of the earth. For a review of the so-called energy-balance models see, e.g., Henderson-
Sellers and McGuffie (1990). Let us rewrite Eq. | in the form:

+S(1-A4)-6T*, xe0, (1

~

aT T S
—=D;,—+¥Y—0oT', where D,=k/C, 0=06/C, ¥=—(1—-A) (2)
ar ax- C
Further we suppose that the planet surface can be covered by the vegetation with the density N(x,z), its
dynamics is described by a logistic equation:
IN a’N ,
— =D,— +aN— yN* 3
ot N ox? “ Y )
where « is the Malthusian parameter (Malthus, 1798) of the growth function.

Now we formulate two hypotheses, which are the description of feedbacks between the climate and
vegetation of our world.

Hypothesis 1. The albedo A depends only on the vegetation density N, so that A = A(N) is a monotone
decreasing function of N (see Fig. 1).

Then the function W(N) will be the following (see Fig. 2). Obviously that WV, (N) > 0.
We assume Wy, > 0 for any N> 0.

Hypothesis 2. The growth function o depends only on T; « is an unimodal function of T (see Fig. 3).

Obviously that o', > 0if T<T7, . and o, <O if T>T.

opt? apt?

a(T)>0ifTe(T,,. T,

min? max)‘

AQN)

Fig. 1. Albedo A as a function of vegetation density N according to hypothesis 1. A, is the albedo of the naked surface. A, of surface fully
covered by vegetation.
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Fig. 2. The function ¥ (V)= (5, C)1— A(N)Yin (2).

On the ecological point of view, the a(T) describes the ecological niche, defined as the interval of T with
a(T) > v, for vegetation in the space of climatic factors.

And finally, Egs. 2 and 3 together with the functions A(N) and «(T) and the corresponding initial and
boundary conditions make up the biosphere for our world.

3. Preliminary analysis: uniform biosphere

First we will consider solutions, which do not depend on the spatial coordinate x. These solutions correspond
to the so-called *‘uniform biosphere”’, i.e. the biosphere with characteristics which are identical for any point of

the planet. The evolution in time of the uniform biosphere derived from Egs. 2 and 3 is determined by the
following nonlinear system:

oT

— =W(N)-0oT*,

at

ON (4)
(9—1‘ = a(T)N— yNz.

Further we can see that the most important properties of the general problem can be reduced from analysis of
the system 4.
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Fig. 3. The Malthusian growth function «(7') according to hypothesis 2.
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Fig. 4. Graphical representation of Eq. 5 at different S. I: N = a(T) /v, II: T=(W¥(N)/¢)'/*. The different stationary points (7",N ") are
denoted by letters a—c.

Let us consider the equilibrium points T(:) =T " = const, N(1) =N * = const. of Eq. 4. Then they must
satisfy the equations:

T =(¥(N*")/a)"",

A (5)
=0 or N"=a(T")/y.

It is better to consider them graphically on the plane {N,7}. Depending on the value S, six cases can be
differentiated in respect to the number and position of the intersections between curve (I): N = o(7) /7y and (ID):
T=(¥(N)/c)"/* (see Fig. 4a—f). These intersections fulfill Eq. 5 and are equilibria of Eq. 4.

Up to three equilibria denoted as a = {N,*,T,'}, b ={N,",T,’}, and ¢ = {N,*,T.”} can be found. The points a

in Fig. 4a—f are semi-trivial equilibria, where

N*=0 and T"=(¥/0)"" (6)
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If T* <T,, then we can speak about our planet as the ‘‘cold desert’”, if 7" > T,
desert’’.

ax» then about the “‘hot
Let us calculate the eigenvalues A, of the Jacobi matrix

%(W(N) —40T?) i(«If(N) —40T?)

J= oN _ _4UT*3 q’.’\ll(N) (7)
J d ar(T)N  a(T)—2yN
— _ 2 _ _ 2 T
GT(a(T)N yN?) 6N(a(T)N yN?)
for Eq. 4:
1 ,
/\1,2=E<—(yN‘+40'T*3)i\/(7N*+40-T*3)2—4N‘(470T*3~a'T(T*)‘If,’V(N*))} (8)

The value of the A, characterizes the behaviour of the system in the vicinity of the equilibria {N *,7"}:
1. N5 <0, N, €R:{N"T "} is an attractor and is called a stable node.
2. Re(X,,) <0, N, €C: {N",T"} is called a focus. The local phase portrait is a spiral that winds into the
node.
3. M, <0 {N*,T"} is a repeller and is called a saddle point with one stable direction.
4. Ny, >0: {N".T"}is a repeller and is called a unstable node.
If one of the \; is equal to zero, then an analysis of next order is neccessary. A comprehensive introduction to
the analysis of ordinary differential equations and dynamical systems can be found in Arnol’d (1973), Jordan
and Smith (1977), and McCauley (1993).
For the ‘‘semi-trivial”’ points with N * =0 we have
A=a(T"), Ay=—40T"} (9)
and if either 7" < T,
T,,..x» then the equilibrium is a saddle point (A X, <0).
For the ‘‘non-trivial’’ equilibrium with N * = a(T")/y > 0 we have the following:
« if &« (T*)V(N*) <40yT "7, then the point {N *,T *} is either a stable node or focus,
 if & (T*)W(N")>4oyT ">, then this point is a saddle point.
- if

or T* > T,,,. the equilibrium {N * = 0,7 "} is a stable node (A, , <0), if T,;;, <T* <

min

(40T — yN*) + 4N (T* )W (N") <0, (10)

then the point {N *,7 *} is a focus, in the opposite case we have either node or saddle.

According to the Poincaré—Bendixson theorem the system ends up either in a stable node or a limit cycle (a
one-dimensional attractor) because we have only two phase variables T and N. If we apply to the system 4 the
Dulac criterion as a proof of the absence of limit cycles (see, e.g., Hale and Kocak (1991)) in the form

F(T ., ¥ alWN T* 81NT N dol” 0
T N)=—={— - +—{—- - =—-—— - y<0,
(7h) = | ) =0T+ ol 5 N a(D) =) = - e =y
then we can see that there is even not a limit cycle inside the positive quadrant N> 0, T > 0. Therefore we
conclude:

The structure of phase plane for the system 4 is sufficiently simple.

Let us come back to Fig. 4a~f: now phase portraits of system 4 are plotted for parameters equivalent to the
corresponding Fig. 4 in respect to the number and positions of the equilibria. Their stability is analyzed in the
following.

Geo-Biosphere Processes
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Fig. 5. (a) Phase portrait of system 4 corresponding to Fig. 4a with 7,” < T, (*‘cold desert™). (b) Phase portrait of system 4 with

T," < T, (¢) Phase portrait of system 4 with 7,” <T,,. (d.¢) Phase portrait of system 4 with 7, > 7, (f) Phase portrait of system 4
with 7,7 > 7, .. (“‘hot desert’’).

In Fig. 5a the point a is a stable node, the final state of this planet (for any initial conditions) is the ‘‘cold
desert’”” (N*=0,T" < 1., 1.6. DO vegetation can occur). It exists always if

Tmin>(lpl/a)]/4' (ll)

If T, > (¥, /0)"/* as before, but T." < T, we have the following picture (Fig. 5b). In this case the point a is
a stable node, the point b is a saddle and the point ¢ is a stable node, since a'7(7.”) > 0.

It is interesting that there are two stable final states (point a and ¢), and the singular trajectory of saddle
point b divides the quadrant N > 0, 7> 0 into two domains of attractivity. The initial condition of temperature
and amount of vegetation determines whether vegetation can exist or not.

Let . > T, (Fig. 5¢), and, in addition, the inequality 10 is valid (note if 7,” =T, this inequality is not
valid), then the point ¢ is a stable focus. As before, the point a is a stable node, the point 5 is a saddle. If



Y.M. Svirezher, W. von Bloh / Ecological Modelling 92 (1996) 89-99 95

T/ > T, the phase picture (Fig. 5d,e) changes: the point a becomes a saddle point, the point ¢ is, as before,
either a stable node or a stable focus. In Fig. 5f the point « is a stable node that corresponds to the ‘‘hot desert’’
(N, =0.T; >T,,,).

max

4. Do dissipative structures exist? Diffusive instability

The local analysis of singular points and their stability can not answer us the question: do dissipative
structures exist here, i.e. do other solutions, except constants, exist in this problem? In order to get the answer,
we have to test them in relation to the diffusive instability (see Levin, 1976, and Svirezhev, 1978).

The validity of the following inequality (at the corresponding equilibria determined in the previous section) is
a necessary and sufficient condition for the diffusive instability:

Dy @y + Dy Fy > 2yDy Dy (Fr @) — Fy P7) (12)

where ® = «(T)N —yN?; F=W¥(N)—oT". From Eq. 12 we have

(a(T") =2yN")Dy— 40T "*Dy>2yD; Dy( Fr @~ F 1) (13)

where Fj= —40T"* @y =a(T*)—2yN"; Fy=V(N"), =o' {(T"IN".
If N* =0, then from Eq. 13 we get

a(Ty YDy — 40T, °Dy > 2yDy Dy(—40T)? (T ). (14)

Obviously that a(7,") must be negative, i.c. this equilibrium is a stable node, but in this case the inequality is
not valid for all values of 7,", D, and D,.
If the equilibrium is non-trivial, i.e. N * > 0, then

—yN*D;~40T"’Dy>2/D;DyN" (4yoT"* — a;¥y)) (15)

We can see in this case that the diffusive instability does not exist either.
And finally we can say that in this problem there are not the spatially non-uniform solutions (differing out of
constant) like dissipative structures.

5. The waves: propagation of perturbations
““Revenons a nos moutons’’, i.e. let us consider the original problem again: there is the system of two
nonlinear parabolic equations:

T

— =D; AT+ ¥(N)—oT*

ot (16)
N )
?t— = DNAN+ OZ(T)N— ’}/N'
Since inhomogeneous equilibrium solutions do not exist, we can restrict to wave solutions of Eq. 16, i.e.
solutions in the form

T(x,t)y=T(x+ut)
N(x,t) =N(x+ut),

(17)

Geo-Biosphere Processes
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where ¢ = const is the velocity of wave, to study the propagation of perturbations and, secondly, to special class
of initial conditions, which will generate these waves: T(x,0) = T,(x) and N(x,0) = Ny(x) must be finite
functions, i.e. they differ out of zero only on a finite interval.

If we substitute Eq. 17 into Eq. 16, then we get (let § = x + vt):

oT'=D;T"+ W(N) —oT?,

, (18)
vN'=DyN"+ a(T)N— yN~.

This 2-dimensional system of second-order ordinary differential equations can be transformed into a 4-dimen-
sional first-order system if we add two phase variables p. ¢:

dT

e "

dp v aoT*  W¥(N)

—_—=—p+ —

d¢ D, D, D; 19)
dN (
a7

dg v a(T)N yN°

_.:_q_. +

d¢ Dy Dy Dy

At the equilibria of Eq. 19 p and ¢ must be zero. Then the equilibria of Eq. 4 are also equilibria of the two
remaining equations of Eq. 19. But mention that the system dimensions are distinct.

In the remaining part of our paper we will focus on the development of such propagating waves under
different initial conditions of 7 and N. It is necessary to solve Eq. 19 explicitly, which cannot be done
analytically due to the nonlinearity of the system. Therefore further analysis of the system is carried out with
numerical methods.

The original system 16 was solved for different initial conditions of the form:

T(x,0) =T, = (¥(0) /o)
1 if {xl<w/2 (20)
N(x,0) =R, =
(20 =R =40 it 141> w2
N(x,0) is defined on a finite carrier [—w/2,w /2] and could be member of the class of initial perturbations
generating nonlinear waves.
From now on N(x,t), T(x,t) are defined on a finite world Q =[—L,L]. Therefore the behaviour of the
model must be defined at the boundaries x = —L,L. We choose periodic boundary conditions

N(—L,t) =N(L,1) 21

T(—L,r)y=T(L.t)

defining a ring topology on ().
The numerical calculations were done with an adaptive Runge—Kutta scheme after transforming the partial

differential equations by a finite difference method into a system of ordinary ones. For a short description of the

applied algorithms see, e.g., Press et al. (1988). These calculations were repeated for a set of parameters w and

T,, i.e. different insolation S, on the domain © and the following was observed:
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Fig. 6. Evolution in time of the vegetation N(x.7) for a rectangular perturbation with (a) w < w;,. (b) w > w_;.. The labels at the curves in
(a) denote the different times . The equidistant curves in (b) indicate a constant propagation velocity of the nonlinear waves.

If T, < T, the evolution in time depends on the parameter w (the width of the rectangular initial condition
for N as defined in Eq. 20) (see Fig. 6a,b). If w is below a critical value w,;,, then the solution N(x,#) vanishes
in time, i.e.:

lim N(x,2) =0 if w<w,, (22)
g

For w > w,,,, however, a propagation of the initial perturbation with a constant velocity v can be observed (see
Fig. 6b).

An explanation of this behaviour can be found if we compare the system with the equivalent system of the
uniform biosphere: at the chosen T}, two equilibria are stable with N * =0 and N * > 0 (see Fig. 5b). It depends
on the initial value of N which of the two equilibria are reached. The diffusive system exhibits a similar
behaviour because the final state depends on the width of the initial perturbation.

As a first guess, the total amount of vegetation N, described by

Nyt = L N(x.0)dx (23)

seems to be an appropriate criterion for the development of propagating waves. However, this is not valid, the
geometrical arrangement must also be taken into account. To prove this a composition of two rectangular
perturbations (w < w_;,, 2w > w,,;,) separated by a distance 3 was used as an initial configuration:

)

X+ =], w<w
2

crit

)
N(x,0)= Ru.(x - —7—) +R,

(24)

crit

L
Ivlola] :[ LN(X,O)dX: 2w > w

Geo-Biosphere Processes
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Fig. 7. Development of the initial perturbation according 1o Eg. 24 for (a) large & and (h) small 3.

Note that each of the rectangular perturbations R, alone (3 — %) goes to zero for T, <T, . For & =w,
however, we have

N(x0)=R (x—w/2)+R (x+wn/2)=R, (x). (25)

which propagates in time with nonlinear waves. A development of propagating waves occurs even for &> w
(Fig. 7b), while for large & the perturbation vanishes in time (Fig. 7a).

6. Conclusion

It was shown that the proposed vegetation—climate model has a topological simple phase plane. i.e. all
trajectories end up in equilibrium points. Analysis of the stability of the equilibria indicates an existence of two
stable nodes for a certain interval of S. Depending on the initial point in the phase plane {N.T} it will either
reach the point with N =0 or N > 0. These two equilibria coincide with the occurrence of vegetation in our
climate—vegetation model.

Diffusive instabilities do no exist either. Spatial perturbations of the system, however, lead to the
development of propagating nonlinear waves. Their occurrence depends in a non-trivial way on the initial
geometrical configuration. We can say that the spatial form of an ecosystem leads either to an extinction or a
growth by developing *“travelling waves’".

In the next step the numerical simulations will be extended to spatial two-dimensional structures in order to
see the evolution of spatio-temporal patterns. A second goal is the incorporation of a carbon cycle into this fairly
simple model. Such an extension will allow us to have a more complex structure of the phase plane.
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