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Introduction

The immune system is a very complex system crucial for the survival of higher
organisms. Its purpose is the protection of the organism against pathogens
(such as fungi, viruses or bacteria) by identifying and destroying them. Also
cancer cells and toxins are targets of it. Depending on the complexity of the
organism the immune system has different possibilities to react.

Higher vertebrates such as fish, amphibians, reptiles and mammals devel-
oped mechanisms to respond unspecifically on pathogens, but also a specific
immune response. The unspecific immune system yields immune responses
such as inflammation that occur unspecifically due to intrusion of a pathogen.
It is congenital and able to fight against a variety of pathogens, but is unable to
establish a lasting immunity. The specific or adaptive immune system on the
other hand reacts specifically on the pathogen and can in many cases build up
a memory of that pathogen. This memory yields in a more direct and more
efficient reaction the next time a pathogen of that type is encountered. Even
a lasting immunity against it can be set up that way, which is the basic idea
of vaccination. A very brief overview of the adaptive immune system is given
here. Details can be found in [1], for instance.

Lymphocytes, a kind of white blood cells mainly produced in the bone marrow,
carry out the main functions of the adaptive immune system. Two groups of
them are known: T-lymphocytes (1) responsible for destruction of pathogens
(cytotoxic T-cells) as well as (2) those for activation of other lymphocytes (T-
helper cells) and (3) those for regulation of immune responses (regulatory T-
cells). The other group, B-lymphocytes (B-cells), proliferate antibodies. Some
lymphocytes can furthermore differentiate into so-called memory cells.
Antibodies are Y-shaped proteins used for marking and liquidating patho-
gens (see figure 0.1). They consist of constant binding regions and variable



one, which have different forms in a variety of amino acid sequences. The
variable regions bind, depending on their structure to certain antigens, which
can be any type of substance or molecule. They are located on each arm of the
Y and of the same type for each arm. This type of the variable regions that is
specific for the antibody and the antigens it can bind to, is called idiotype. The
constant regions, on foot of the Y, determine how the antigen is treated after
being bound by the antibody;, e. g. it is marked for destruction by macrophages.

Antibody B
Antigen B

Antibody A

Figure o.1: Schematic of antibodies and an antigen. The constant re-
gions of the antibodies are coloured in blue, the variable regions
are coloured in green and red. It is schematically shown how an
antibody (type A) can bind to either an antigen or another antibody
of complementary type (type B).

Each B-cell expresses antibodies of a certain idiotype on its surface, grouped
together in surface immunoglobulin (sIg). If the variable regions of two of
these antibodies are bound by another molecule and are thus cross-linked, the
B-cell is stimulated. Upon stimulation B-cells differentiate into plasma cells,
which produce and then release antibodies of the same idiotype (actually also
some hypermutation can occur). In the bone marrow on the other hand the id-
iotype of antibodies on a B-cell is determined by gene segments. These encode
different parts of the variable regions of these antibodies. They are shuffled
during development of a lymphocyte and thus yield a supply of B-cells of
fairly random idiotypes. These two mechanisms empower the immune system
to produce antibodies of a huge variety of idiotypes which help to specifically
fight pathogens. It is believed that all sorts of antigens in principal can be
recognized by antibodies.

In fact antibodies are also capable of binding to other antibodies of comple-
mentary type (see figure o.1). Hence they can also stimulate B-cells and the
system of B-cells and their antigens becomes self regulating. This led Jerne to
his theory of idiotypic networks published in 1974 [2]. The adaptive immune
system is modelled in a network of idiotypes, concentrations of antibodies of



one idiotype influencing those of another. Whereas the network paradigm was
very popular in the 1980s, it went out of fashion in the 1990s due to huge
progress in molecular immunology. However, networks are better understood
nowadays and are used in the uprising system biology to study phenomena
from a systematic point of view. A renaissance of the network idea can be
perceived, for instance, as given in a review by Behn [3]. Among other things,
the network attempt is believed to improve the understanding of autoimmune
diseases and the immunological memory.

This work is based on a network model developed by Brede and Behn in 2003
[4], the bit string model. In it the system is modelled by a probabilistic cellu-
lar automaton on a network. For a wide range of parameters stable states are
reached, so-called patterns. They are of particular interest in the understanding
of the system as their possibility and stability strongly contribute to its be-
haviour. Subject of this work is the recognition, classification and description
of these patterns in terms of their structure and stability.

Chapter 1 presents the model and some basic methods for analysis. Apart
from confirming previously discovered results, a visualisation of patterns is
developed in chapter 2. A catalogue of many patterns found is given and
discussed in matter of stability. As it turns out pattern classification methods
so far are not sufficient to describe all patterns found. A method for more
general patterns is introduced in chapter 3. Using an algebraic concept for
network description it is proven to be complete in certain situations. System
analysis done in chapter 4 supports the concept. It gives a hint for a general
complete pattern classification which is a combination of the previously devel-
oped and the newly introduced concept here. For some patterns, namely the
purely dynamic ones, symmetry is furthermore discussed to ascribe them to a
root pattern. As the model is fairly abstract extensions are manifest to bring it
closer to its real nature counterpart. Chapter 5 gives some of these extensions
and their influence on the patterns emerging. Concepts and methods given
here are then applied in chapter 6 to deepen the study of a scenario with an
intruding antigen that was started in a previous work. The antigen induces
patterns that can be interpreted as the memory of the antigen in the network.
This inducing is explained and the internal images of the antigen are deter-
mined. Summing up, the main result of this work is classification of general
patterns that helps understanding mechanisms such as emerging subpatterns,
for instance, induced by an antigen.






The model

Subject of investigation in this work is the bit string model of idiotypic net-
works as developed in [4] in 2003. It is presented in this chapter together with
some basic means of analysis. In later chapter it is simply referenced by “the

model”.

1.1 Design

The bit string model of idiotypic networks is a probabilistic cellular automaton. Its
cells are discrete, they form indeed a network, and its states develop along a
random walk in state space. Though its basic structure and dynamic rules are

fairly simple, a vast dynamic behaviour emerges.

1.1.1 Underlying network

The basic structure of the model is an undirected graph Gém) = (V, &) (the
terms graph and network are used synonymously throughout this work). Ev-
ery node is a bit string of length d, i. e. of the form v =v; ...v; with v; € {0,1}.
Thus, V := {0,1}, and the number of nodes is |V| = 2. Every bit string is
a model representation of an idiotype, more precisely a representation of the
structure of the binding site (idiotopes) of an antibody of that idiotype. Bit
strings have been chosen according to the key-lock principle: antibodies can
bind to other antibodies, as long as their binding site structure is fairly com-
plementary. In terms of bit strings, two antibodies are modelled to be able to
bind, if the bit strings representing their kind are complementary in all bits
except up to m bits, the so-called mismatches. In other words, they are able to
bind, if the corresponding bit strings differ in at least d — m bits. The number



of bits two bit strings differ in is called their Hamming distance. For example,
the complement of 10110 is 01001 (in Hamming distance 5) and 11001 is its
complement with one mismatch in the first bit (in Hamming distance 4).

In the graph, nodes are connected according to the ability of the correspond-
ing antibody types to bind. Thus, the edge set of the graph (i. e. the set of all
pairs of nodes that are connected to each other) is defined as:

E:={(u,v)eVxV:idy(uv)>d—m} (1.1)

(dg(u,v) is the Hamming distance: the number of bits differing between bit
strings u and v). Nodes that are directly linked to another one are called
its neighbours. To avoid pathological situations, the number of mismatches
m is chosen to be 0 < m < d —1 (For m = 0 nodes are only linked to their
complements, the graph decomposes into pairs without connection in between.
For m > d — 1 the graph is complete, i.e. every node is connected to every
other).

Each node has two possible states: occupied or unoccupied. Occupation rep-
resents the presence of antibodies of the corresponding type within the body.
The state of a node v at time t € IN is denoted by n¢(v) € {0,1} (0 for unoc-
cupied, 1 for occupied). The totally unoccupied network is often referred to
below as the empty network.

1.1.2 Dynamic rules

The occupation of nodes develops over time and is subject to simple dynamic
rules that are applied during each discrete time step in following order:

1. Influx
The main source for antibodies in the body is the bone marrow, that
produces lymphocytes of various idiotypes. This random supply of idio-
types is modelled by occupying nodes randomly: Each unoccupied node
is occupied with probability p in the first stage of every iteration. p is a
parameter of the model and as well independent of time and node.

2. Update
Since antibodies are carried by B-lymphocytes, which have limited life
time, the presence of an idiotype depends on the stimulations of the cor-
responding lymphocytes, which triggers their reproduction. A B-lympho-
cyte is only stimulated by cross-linking two of its antibodies expressed



on the surface by one matching antibody (antibodies are Y-shaped pro-
teins with binding sites on each arm). Experimental results and theoreti-
cal considerations (see [5], for instance) highly suggest a log-bell-shaped
stimulation-response curve, that is simply modelled here by a rectangu-
lar window function: If there are less matching idiotypes than a lower
threshold t; present, stimulation is not high enough and the correspond-
ing node is unoccupied. If there are more matching idiotypes than an
upper threshold ¢, present, possible binding partners constrict each other
and cross-linking becomes unlikely, the corresponding node is also unoc-
cupied.

The number of binding partners of an idiotype represented by the node
v is the number of its occupied neighbours:

on(v) = ) n(v'). (1.2)

v'eV;dy(vyv')>d—m

Is the node occupied and does the number of its occupied neighbours ful-
fil the window rule, an(v) € [t;; t,], the node stays occupied. Otherwise
it is unoccupied. The update is applied in parallel on all nodes.

These two steps are iterated over time.

1.2 Analytical concepts

Up to now several analytical concepts have been used to study this model.
Some of them are again used in this work.

1.2.1 Centre of mass
In [6, ch. 9] the analytical concept of the centre of mass vector is introduced.
Definition: For the time ¢t € IN the centre of mass vector is defined as:

1 Z n(v)-(2-v— 1(d)), (1.3)

R=Rji=——
ZVGV nt(V) vey

with 14 = (1,...,1)T € {0,1}%.

In words, the centre of mass vector component is calculated by summing over
the nodes. If an occupied bit vector has a bit set 1 in the corresponding com-



ponent it contributes to the sum with 1, if the bit is unset to 0 it contributes
with —1, if the node is unoccupied it is not taken into account. The sum is then
normalized by the number of occupied nodes.

Therefore a positive centre of mass vector component indicates that more bit
vectors are occupied whose corresponding bit is set 1 than those with that bit
unset to 0. A close-to-zero component on the other hand indicates no prefer-
ence in the setting of the corresponding bit.

It is a great instrument for identifying groups of nodes such as in the deter-
minant bit concept discussed in section 2.1.

1.2.2 Shannon entropy

Another concept proves useful: the Shannon entropy as defined in information
theory.

Definition: The Shannon entropy shall here be used in the form (py is the mean
occupation of node v):

5=~ L (pe-In(p) + (1= pu) In(1 = pu)), (1.9

veVy

Hence it is not a quantity of a microstate (being a snapshot at a given time
t € IN) but a quantity of a macrostate.

As seen in figure 1.1 and easily verifiable, the summand for every node
v eV, Suipy) = —py-Inpy — (1 — py) - In(1 — py), is symmetrical around
and maximal at py = % The Shannon entropy therefore gives a measure of
“variability” of a macrostate of the network: the more a node is mean-wise oc-
cupied or unoccupied the smaller its summand in the entropy. In other words:
the smaller the entropy of a macrostate the more its nodes show constant oc-
cupation; the smaller the entropy the more static the pattern, the larger the
entropy the more dynamic it is. In this work the Shannon entropy was used
to computationally distinguish macrostates reached by the network. For in-
stance, in figure 2.1 the Shannon entropy was calculated to show patterns a
network with given parameters reaches in mean thereby taking advantage of
the Shannon entropy supplying information about the whole network in one
measure.

10
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Figure 1.1: Plot of the function S(p) = —p-Inp — (1 —p) - In(1 — p).

With analysis methods like these at hand, computer simulations can be run.
This is done by starting with a network in a certain state. In most cases in this
work it is the totally unoccupied network (the “empty” network). Then, the two
iteration steps are iterated over and over again. In parallel the analysis methods
can be applied. In many cases the network has a transitional phase first, in
which it is mostly filled by the influx and takes a few hundred iterations to
develop a stable state. These will be studied further in the following chapters.
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Patterns and arrangements

For a wide range of parameter choices the system reaches a steady (macro)state
after some iterations during a transitional phase. Such macrostates are charac-
terised by a constant mean occupation for each node over some time steps. In
most cases nodes can also be grouped together according to their statistical
properties in states (such as mean occupation, mean lifetime, mean neighbour
occupation). These macrostates with a regular spacial structure shall be called
patterns. A kind of pattern (called architecture in some previous works) can ap-
pear in different realisations or “rotations” of a pattern of that kind. Classifying
and analysing these patterns has been done intensively in previous works and
shall further be extended here.

For classification of patterns there are several ways of grouping together
nodes. The allocation in the largest groups possible according to a grouping
concept is to aim for and shall be used here when referring to a class of pat-
terns. One way of establishing these groups, the concept of determinant bits, is
described in this chapter and used to develop an arrangement of the network
to allow quick recognition of a pattern and its substructure. Looking at the
substructure of various examples the concept of determinant bits turns out not
to be sufficient to describe all patterns occurring.

The Shannon entropy eq. (1.4) is a great tool for exploring patterns appearing
in simulations since many patterns of different kinds have a different Shannon
entropy. In figure 2.1 it was computed for 100 networks in a range of influx
parameter p for the parameter setting that was mostly used in previous works,
d=12, m =2, [t;t,] = [1,10]. Plotting the histogram of Shannon entropies
(the blacker a point in the diagram the more often the corresponding Shannon
entropy occurred) some patterns can be distinguished. The most important
of those were marked with their kind as proposed by determinant bits (see

13
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Figure 2.1: Histogram of the Shannon entropy. For each of 1000 p-
values 100 simulations were run starting from an empty network.
After 500 iterations the Shannon entropy was taken over 10* itera-
tions. Some branches are marked according to the corresponding
pattern as described in the following sections. There are two differ-
ent kinds of dj; = 6 patterns. An example for kind ”(a)” is shown
in figure 2.8 (p. 27), for kind ”(b)” see figure 2.9 (p. 27). [d=12,
m=2, [t;;t,) =[1,10]]

next section). For values of influx parameter p larger than p,.x ~ 0.077 the
network shows constantly rotating dj; = 11 patterns (i.e. ever changing to
different realisations of the same kind of pattern). The larger p the higher
the rotation rate, which eventually exceeds the possible resolution. Thus, no
steady macrostate is reached and the impression of a fairly random distribution
of mean occupation of the nodes is left.

2.1 Determinant bits

A possible concept of classifying patterns has been introduced in [7]: The con-
cept of determinant bits and the consequent allocation of the nodes to groups
S;.

Definition: A choice of dy; € {0, ..., d} determinant bits is a choice of positions

(i1, dg,) EN™M, 1<ij<iy<...<iy, <d, (2.1)

14



of those determinant bits. They moreover shall have determinant values
(lll"'lldM) € {0,1}dM. (2.2)

Given a choice of determinant bits the nodes are allocated into groups de-
pending on their values in the determinant bits. Nodes of a group S; have i
variations from the determinant values:

dm
Sk={veV k= Z|l]-—vij|}. (2.3)
j=1

Of course for dp determinant bits there are groups Sy, ...,S4,, (from 0 vari-
ations till a maximum of dy; variations from the dj; determinant bits). For
k € {0,...,dy} there are (d;g/l) possible positions in which a node in group
S can differ from the values of the determinant bits. For each of these vari-

ations there are 2(@—dm)

possible bit values in non-determinant bit positions.
. . — d
Therefore the size of each group Sy is |Sy| = 2(4=dm) (%),
Many patterns have been shown to fit into that group occupation, i. e. nodes
in a group sharing the same statistical properties like mean occupation. Fur-
thermore in most cases there is a direct relation between the determinant bits

of a pattern and its centre of mass vector eq. (1.3):

¢ Components of the centre of mass vector with zero value indicate that
the corresponding bit is non-determinant.

¢ Components with a positive value indicate a determinant bit with deter-
minant value 1 at the corresponding position.

¢ Components with a negative value indicate a determinant bit with deter-
minant value 0.

In many patterns the values of the components belonging to determinant bits
have the same absolute value which itself depends on the number of indicated
determinant bits. The exact value, ﬁ, can be determined theoretically as done
in [6, ch. 9]. On the other hand, patterns emerge that have several different
absolute values of non-zero components of the centre of mass vector (the ac-
cording determinant bits were named “primary”, “secondary”, etc. in [6, sec.
4-4]). If a dp; is given here for a pattern, it is the number of determinant bits as

indicated by the centre of mass vector. Though not always appropriate for the

15



consequent allocation of nodes into groups it turns out to be the best descrip-

tion of a pattern in terms of determinant bits.

Definition: If the components of the centre of mass vector corresponding to

determinant bits are of same value, the determinant bits shall be named
simple. If they are of different value, the determinant bits are non-simple.

In case of non-simple determinant bits, dE\}I) denotes the number of deter-

minant bits with the largest absolute value in corresponding components
of the centre of mass vector (primary determinant bits), dﬁ) is the number
of determinant bits with the second largest absolute value in correspond-
ing components (secondary determinant bits) and so on (for an example see

figure 2.2).

In the following, for non-simple determinant bits the number of determinant

4

bits of each priority is given by the notation dy := (d,,, ..., dg\l/?). For simple

determinant bits only dj;, the number of all determinant bits, is given.

16
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Figure 2.2: Components of centre of mass vectors; starting from a to-
tally unoccupied network. The last 200 components correspond to
non-simple determinant bits with dy; = (3,3): three components
have value —0.5, the corresponding bits are the primary determi-
nant bits with determinant value 0. Another component has value
—0.25 and two further ones have value +0.25. Since they all have
absolute value 0.25 < | — 0.5], they correspond to the secondary
determinant bits (one with determinant value 0 and two with 1).
All the other components are almost 0 (corresponding to the non-
determinant bits). [d=12, m=2, p=0.015, [t;; t,]=1[1;10]]

2.2 Arrangements

In this chapter an arrangement of the nodes on a two-dimensional grid is de-
veloped. Its purpose is to visualise their occupation in a manner that enables

quick recognition of appearing patterns and even substructures. Since the net-
. d i ' 4] 4]
work consists of 2 nodes an arrangement on a grid of the size 2L2) x 212

suggests itself. Further on the Gauf’ brackets will be used extensively:

[x] :=min{y e N:y >x}  upper Gaufl bracket
|x] :=max{y € N:y <x}  lower Gauf bracket,

they are simply the formal way of rounding “up” or “down”.

17



For d = 12 the grid is a square with an edge length of 2° = 64 grid points.
Every grid point in such a grid represents a network node and can be coloured
depending on its occupation and belonging to groups defined by determinant
bits. For the pattern to be seen the nodes should be arranged in a way that
nodes in the group S, turn out to be close to the groups S,,_1 and S, .

It shows up that for certain patterns the allocation to groups S; is broken.
Therefore a more general allocation to equally-sized blocks is proposed. This
new allocation furthermore allows calculation of possible static patterns. Un-
derstanding those is crucial for the understanding of dynamical patterns and
their stability.

Let d s be the number of chosen determinant bits. Without loss of generality
those are said here to be the first d) bits and the non-determinant bits are the
d — d bits at the right end of the bit chain:

ai...ayq bl---bd—d ’
M M

with ay,...,a4, determinant, by,...,b;_4, non-determinant.

Moreover without loss of generality, let the values of the determinant bits be
chosen to 0 (otherwise the bits used here describe a variation from the value of
the determinant bits of 1 (respectively no variation for the value of 0)).

2.2.1 Arrangement of blocks

First of all the rectangular grid is divided into blocks, a block being the set of
nodes sharing the same values in all determinant bits (i. e. all values of non-
determinant bits vary among the nodes of one block and only these values do).
Since there are 2¢~M possible values of non-determinant bits each block is of
size 29-m,

The blocks of a column of blocks should have equal values in determinant
bits, likewise the blocks in a row of blocks. This can be done by varying the
tirst (dTMW determinant bits along columns of blocks and the values of the last
[dTMJ determinant bits along rows of blocks.

The first column has no variation in the first deM] determinant bits, the next
columns have one variation, the next columns have two and so on. Similarly
for the rows in the last LdTMJ determinant bits.

In the case of d = 12 and dj; = 6 this method yields following arrangement
(e stands for bits varying along a row or column respectively):

18



Determinant bits of the...

.1stcolumn: 00Qeee .1strow: eee (000
.and column: 100 e e e .2ndrow: eee100
.3rdcolumn: 010eee .3rdrow: eee(010
. 4thcolumn: 00leee .4throw: eee(001
.5thcolumn: 110eee .5throw: eee110
.6thcolumn: 10l eee .6throw: eeel101
.7thcolumn: 01leee .7throw: eee(11
.8thcolumn: 111 eee ..8throw: eeel111
In total the determinant bits of the blocks turn out to be:
000000 | 100000 | 010000 | 100000 | 110000 | 101000 | 110000 | 111000
000100 | 100100 | 010100 | 100100 | 110100 | 101100 | 110100 | 111100
000010 | 100010 | 010010 | 100010 | 110010 | 101010 | 110010 | 111010
000001 | 100001 | 010001 | 100001 | 110001 | 101001 | 110001 | 111001
000110 | 100110 | 010110 | 100110 | 110110 | 101110 | 110110 | 111110
000101 | 100101 | 010101 | 100101 | 110101 | 101101 | 110101 | 111101
000011 | 100011 | 010011 | 100011 | 110011 | 101011 | 110011 | 111011
000111 | 100111 | 010111 | 100111 | 110111 | 101111 | 110111 | 111111

Colouring blocks depending on their belonging to groups yields:

19



Shared determinant bits of a row of blocks
000ll]l eee(ll eeel()]l eeell) eee(01 eee()l) eeel0) eee(000

N N e e e N N -
000eee 100eee (10eee (0leee 110eee 10leee (lleee 1l1leee

Shared determinant bits of a column of blocks

Figure 2.3: Snapshot of a network state with dy; = 6, a black coloured
grid point represents an occupied node. Grid points have also been
coloured according to the group the corresponding node belongs
to (group names given above and at the right). [d=12, m=2,
p=0.03, [t; t,]=[1;10]]

2.2.2 Inner-block arrangement

The nodes in a block are arranged in the same way like the blocks in total:
Values of the first L%J non-determinant bits are varied along the columns
and the values of the last (%} non-determinant bits along the rows. The
first column have no bit set 1 in the first L%J non-determinant bits, the next
columns have one, the very next have two and so on. Similarly for the rows in
the last (%] non-determinant bits.

20
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Figure 2.4: Block from figure 2.3, here, the group Sy consisting of solely
one block. A black coloured grid point again represents an occu-
pied node.

2.2.3 Extension to non-simple determinant bits

In case of non-simple determinant bits the priority of the bits has to be taken
into account. In the columns further to the left or rows closer to the top de-
terminant bits of lesser priority vary. In columns further to the right or rows
closer to the bottom determinant bits of higher priority vary. In this way nodes
with the same variations in determinant bits with higher priority keep close
inside their group and patterns and their substructure are easily recognisable.

21



2.3 Pattern examples

Patterns classifiable by determinant bits have been described in various previ-
ous works, such as in [7], [6, ch. 4, 6], [8, ch. 3] and, earlier, in [4]. Here, the
general structure of those patterns is shortly described and shown in the exam-
ple of dj; =4. Moreover, examples for patterns are given using the arrangement
introduced in the previous section.

2.3.1 Structure of patterns

Apart from their allocation to groups defined by determinant bits, nodes have
been classified according to their role in the dynamics of a pattern. The follow-
ing kinds of sets are further on referenced by structure sets.

* Cluster
Set of nodes that is highly occupied by allowing nodes in it to exceed
the lower threshold ¢; by links into the same set. It does not appear in
purely dynamic patterns (e.g. dyy = d—1) that only have influx-driven
occupation.

Singletons
Set of nodes with neighbours in other less occupied sets (hubs, holes or
periphery). They depend on the influx to exceed the lower threshold ¢,
and, in general, the larger the influx parameter p the higher their occupa-
tion.

Hubs
Set of nodes that connect clusters and holes. They have neighbours in
both of them, but are less occupied due to their many neighbours in
the highly occupied cluster and their consequent neighbour occupation
slightly above the upper threshold t,.

Holes
Set of nodes that are totally suppressed by their highly occupied neigh-
bours in the clusters or core, i.e. their number of occupied neighbours
highly exceeds the upper threshold ¢,.

Periphery
Set of nodes that have neighbours in the holes and the higher occupied
core, but not enough to maintain a high occupation.

22



¢ Core
Set of nodes that are self-linked like the clusters, but so strongly (exceed-
ing t,) that they depend on the influx to become occupied. Such sets
appear in purely dynamic patterns only.

In many cases of patterns the groups defined by determinant bits perfectly fit
into those structure sets. An example for djs =4 is shown in figure 2.5. Some
groups, like Sy, are structure sets themselves, other structure sets are made up
of several adjacent groups, such as the holes in the example are found in group
S4 and Ss.

Figure 2.5: "Raupe” of the d); =4 pattern (“caterpillar”, as in [6, ch. 6]).
Solid lines mark linkage between groups, dashed lines indicate sets
of groups.

Visualising the mean occupation of nodes in such a pattern as well reflects
that structure. Figure 2.6 shows a snapshot of a dj; =4 pattern on the left. The
mean occupations of the nodes, arranged in the same way as on the left, are
shown on right. A purely black grid point stands for a mean occupation of
1, a purely white one represents a mean occupation of 0. Intermediate mean
occupations are visualized by grey grid points accordingly: the darker the grid
point the higher the mean occupation. The red lines are borders between the
groups. Easily the almost certain occupation of S; and the high occupation of
Sp can be recognised.
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Figure 2.6: Dynamic dj; =4 pattern with p=0.04, S~0.226.
[d=12, m=2, [t;; t,] =[1;10], started from empty network, after 103
iterations means taken over 10? iterations]

But then some patterns appear whose structure sets of nodes do not fit into
groups according to determinant bits. For instance, consider the pattern shown
in figure 2.7. Its centre of mass vector (see figure 2.7(b)) indicates 5 non-simple
determinant bits, it is a dyy = (2,3) pattern with two primary and three sec-
ondary determinant bits. Though some groups, such as Sp, S3, S4, S5, only
contain nodes of a single structure set, other groups seem to "fill up” with
nodes of different structure sets. The structure sets however still align along
the top-right to bottom-left diagonal. Since they furthermore consist of blocks
of size of Sy, such a block grouping might be preferable, as will be discussed in
the next chapter. Observations show that patterns with simple determinant bits
fit into groups according to determinant bits, while patterns with non-simple
determinant bits do not.
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(a) Structure of the pattern. S ~ 0.030. Started from empty network, after 10° iterations
means taken over 5 - 10% iterations.
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(b) Components of centre of mass vectors. Starting from an empty network, the pattern is
reached after about 300 iterations. The two primary determinant bits have a centre of
mass component value of about 0.75, two secondary have 0.25 and another secondary
determinant bit has —0.25. Thus, dj;=(2,3).

Figure 2.7: Structure and centre of mass diagram of a dy; =5, djy; =
(2,3) pattern. [d=12, m=2, p=0.02, [t;; t,)=11;10]
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2.3.2 Simple dynamic patterns

Looking back at the entropy histogram (figure 2.1 on p. 14) for the parameter
setting d =12, m=2, [t; t,] =1, 10] for various p, which was mostly used in the
cited works, there are two main areas for different kinds of patterns emerging
when starting from an empty network.

For p < pmin11 =~ 0.026 the very stable dy; = 4 (as in figure 2.6) and the
less stable dj; = 6 patterns dominate. The dj; = 6 patterns appear in two
forms, with simple (marked with ”(a)”) and with non-simple (marked with
”(b)”) determinant bits, shown in figures 2.8 and 2.9 respectively. Both appear
very stable, e.g. for p=0.02, but have been observed to undergo transition to
the more stable d); =4 patterns after a long time.

For p > puin11 =~ 0.026 patterns with dy; = 11 appear and dj; = 4 become
unstable for larger p (they undergo transition to dj; = 11 patterns). Whereas
the d)1 =4 and d); =6 patterns have a set of patterns that keeps highly occupied
even for an influx p =0 (the cluster that keeps its high occupation by linkage
into itself), the dj; = 11 patterns are purely dynamic and cannot withstand
lesser than a least influx. For p=0.06 they are the most static (Shannon entropy
has a minimum), as shown in figure 2.11. For larger and smaller values of p
they are more dynamic; an example is shown for p=0.03 in figure 2.10.

Especially the dj; = 11 patterns have been subject of investigation in the
previous works. The details are not restated here. Symmetry analysis in section
4.2.2 will give a hint to why those dj;=d—1=11 patterns arise, but dy;=d =12
patterns do not.
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Figure 2.8: Dynamic d); =6 pattern with p=0.02, S~0.217. Patterns of
this kind belong to the branch marked with "dj; =6; (a)” in figure
2.1 (p. 14).
[d=12, m=2, [t;;t,] = [1;10], started from empty network, after 10°
iterations means taken over 5 - 10* iterations]

Figure 2.9: Dynamic dj;=6, dy; = (3, 3) pattern with p=0.02, S~0.107.
Patterns of this kind belong to the branch marked with “dy;=6; (b)”
in figure 2.1 (p. 14).
[d=12, m=2, [t;;t,] =[1;10], started from empty network, after 103
iterations means taken over 5 - 10* iterations]
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Figure 2.10: Dynamic dj; =11 pattern with p=0.03, S~0.363.
[d=12, m=2, [t;;t,]=[1;10], started from empty network, after 10
iterations means taken over 5 - 10* iterations]

Figure 2.11: Dynamic dj; =11 pattern with p=0.06, S~0.204.
[d=12, m=2, [t;;t,] =[1;10], started from empty network, after 108
iterations means taken over 5 - 10* iterations]
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2.3.3 Simple static patterns

The appearance of certain patterns in simulations, of course, depends on the
starting point of those simulations. To choose an unbiased starting point, sim-
ulations here were mostly run from a totally unoccupied (“empty”) network.
After the first influx it is occupied following a Bernoulli distribution with prob-
ability parameter p. In that way some patterns might never appear, though
they are actually possible. A pattern is possible, if it survives the update and
its window rule [t;; t,] and does not have unoccupied nodes with an amount of
occupied neighbours inside the window. Patterns that are not purely dynamic
thus can be constructed and tested with omitted influx, p =0. Obviously for
purely static patterns with p =0 the Shannon entropy is S =0 (every node has
mean occupation either 0 or 1). Since some patterns are stable only for p =0,
the Shannon entropy does not give a direct hint to pattern stability. Entropy
furthermore is a subjective measure: one might think of an entropy that takes
into account allocation into groups instead of consisting of a naive sum as the
Shannon entropy does.

Following a list of patterns is presented (figures 2.12—2.16), which have been
built using the recursion formula given in section 3.3.3. It definitely is an
incomplete list (further examples are given in the next section), but shows that
patterns with dj; > 6 are also possible. These are in fact too unstable to appear.
The dj; =2 pattern then again is very stable for an influx p not too large, but is
not likely to be reached from an empty network. For each pattern the number
of occupied nodes, () is given (there are 2¢ = 4096 nodes here in total). For
every d there is a kind of such patterns with n(I') =1024. For dp; € {6,7,8,9}
n(T') can be less, even down to n(I') = 952 for dy; = 9. Different n(I') also
occurs with different types of non-simple determinant bits (dy; is given). Still
the number of occupied nodes, n(T'), is an integer multiple of the size of Sy,
|So| = 24-4m,
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(a) Static pattern with dy;=2, (b) Static pattern with dy;=3,
n(T')=1024 n(T')=1024

(c) Static pattern with dy =4, (d) Static pattern with dy; =5,
n(T')=1024 dy=1(2,3), n(T')=1024

(e) Static pattern with dj; =6, (f) Static pattern with dy =6,
dpy=(3,3), n(I')=1024 n(T) =960

Figure 2.12: Static dy; € {2,...,6} patterns, p=0.
[d=12, m=2, [t;; t,]=[1;10]]



(a) Static pattern with dy; =7, (b) Static pattern with dy =7,
dpy=(2,1,2,2), n(T)=1024 dy=(1,1,4,1), n(T) =992

(c) Static pattern with dy =7, (d) Static pattern with dy; =7,
dy=1(2,2,2,1), n(I')=992 dy=1(2,3,2), n(I') =992

(e) Static pattern with dy;=7, (f) Static pattern with dy;=7,
dpy=(1,3,3), n(T)=992 dy=(4,3), n(T)=992

Figure 2.13: Static d); =7 patterns, p=0.
[d=12, m=2, [t;;t,] =1[1;10]
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(a) Static pattern with dy =38, (b) Static pattern with dy; =S8,
dpy=(3,2,3), n(T')=1024 dy=(3,2,3), n(T')=1008

(c) Static pattern with dy; =8, (d) Static pattern with dy; =8,
dy=(3,2,2,1), n(l')=992 dy=(3,2,1,2), n(l')=976

(e) Static pattern with dy;=8§,
dp=(5,3), n(T') =960

Figure 2.14: Static d); =8 patterns, p=0.
[d=12, m=2, [t;;t,]| =][1;10]



(a) Static pattern with dy; =9, (b) Static pattern with dy=9,
dy=(21,2,2,2), n(T') =1024 dy=(21,2,2,2), n(T) =1024

(c) Static pattern with dy =9, (d) Static pattern with dj; =9,
dv=1(2,1,2,2,2), n(I')=1016 dv=1(2,1,2,2,2), n(I') =1008

(e) Static pattern with dy;=9, (f) Static pattern with dy;=9,
dpy=(2,1,2,2,2), n(T)=1000 dpy=(2,1,2,2,2), n(I) =984

Figure 2.15: Static d); =9 patterns, p=0.
[d=12, m=2, [t;;t,] =[1;10]
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(a) Static pattern with dy=9, (b) Static pattern with dy;=9,
dy=(2,1,2,2,2), n(T) =968 dpy=(2,3,2,2), n(T)=960

(c) Static pattern with dp;=9, (d) Static pattern with dy; =10,
dy=1(2,3,4), n(T')=952 dv=(3,2,2,3),n(l')=1024

Figure 2.16: Static d); =9 and dj; =10 patterns, p=0.
[d=12, m=2, [;;t,]=[1,10]]



2.3.4 More general patterns

The insufficiency of the concept of simple determinant bits to classify all pat-
terns has been made clear in the previous sections. Varying parameters or ap-
plying certain symmetry operations (see section 4.2.3) yields further patterns
that cannot be classified satisfactorily by non-simple determinant bits either.
Examples for these are shown in following figures 2.17-2.20. ”"Chess board”
subpatterns emerge, whose classification is topic of the next chapter. For d =12
these had to be prepared, only once a chess board pattern has been observed
to emerge after starting from an empty network. For d=11 and d =13, on the
other hand, they appear very often (a hint for a reason is given in section 4.2

using symmetry analysis).

Figure 2.17: Dynamic dj; =3 pattern with p=0.02, S~0.123.
[d=12, m=2, [t;; t,] =][1;10], started from prepared pattern, means
taken over 5 - 10* iterations]
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Figure 2.18: Dynamic dy; = 5 pattern with p = 0.02, S =~ 0.027. This
pattern appears extremely rarely.
[d=12, m=2, [t;;t,] =[1;10], started from empty network, after 10>
iterations means taken over 6 - 10* iterations]

Figure 2.19: Dynamic dy; =3 pattern with p=0.03, S~0.075.
[d =11, m =2, [t;;t,] = [1,;10], started from empty network, after
2000 iterations means taken over 10% iterations]



Figure 2.20: Dynamic d); =10 pattern with p=0.05, S~0.221.
[d=13, m=2, [t;; t,] =[1;10], started from empty network, after 10°
iterations means taken over 10? iterations]
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2.4 Pattern stability

One of the central questions about the dynamics of the model is the possibility

of patterns and especially their stability. There are different aspects regarding

stability of patterns:

¢ Stability under the influx

Once the network has developed a pattern it is liable to perturbations
done by the influx. After experiencing “unfortunate” occupation events
from the influx a pattern might dissolve and the network will change
to a different pattern. The most perturbing effect of the influx happens
on nodes with a mean neighbour occupation slightly below the lower or
upper threshold. As the influx might occupy more neighbours of a node
with mean neighbour occupation slightly below the lower threshold t;,
that neighbour occupation might exceed t; and increase the occupation
of the node itself. For nodes with mean neighbour occupation slightly
below t,, the influx might lead to a transgression of that upper threshold
and yield in the node losing occupation. An example of how to analyse
such a pattern transition is given in the next subsection.

More important for the stability of a pattern than the mean occupation
of single nodes is the mean occupation of groups of nodes according
to the network decomposition the pattern fits into. Thus, the smaller
the necessary size of the groups of such a decomposition the larger the
perturbation of the influx on the mean occupation (over space and time)
of that group. The instrument of the block-link matrix (see section 3.3.1)
could prove useful for studying that sensitivity.

* Degeneracy of a kind of pattern

In the state space of the system the stability of a pattern under the in-
flux corresponds to the probability of staying in the macrostate that is the
pattern. On the other hand the degeneracy of the macrostate of a pat-
tern (i. e. the number of microstates which give that macrostate) and the
amount of macrostates of patterns of that kind correspond to the proba-
bility of the network reaching such kind of a pattern when starting from
a random point in state space.

It is important to mention that the basin of a macrostate does not nec-
essarily directly relate to its size. That means, though the size of an



macrostate in state space might be large, the probability to reach it from
outside might be very small. For instance, as shown in section 4.2.1, for
the setting d = 12, m = 2 the macrostate of the dj; = 2 pattern is much
larger than that of the dj; = 4 pattern, but it appears much less often

when starting simulations from an empty network.

* Stability concerning topological variations
Of course, the possibility of the system to establish certain kinds of pat-
terns not only depends on its parameters but also strongly on the topol-
ogy of the underlying network. It is possible that some kinds of patterns
simply are a relict of the simplicity of the model with its high symme-
try. Fortunately the behaviour of the system proves comparably stable
to several topological variations as done in chapter 5: many patterns still

appear.

¢ Stability under directed attacks

The influx is a special form of random attacks on the network: the state
is perturbed by random unoccupied nodes becoming occupied by the
influx. On the other hand, if nodes are selectively chosen and changed
in their state, the attack is directed. The stability of a pattern under such
attack depends on their nature: where the attacks takes place (i. e. which
nodes are chosen), how they are changed and in which timely sequence.
One might, for example, think that a clever choice of just a few nodes
and a clever sequence of perturbing their occupation might lead to a sure
transition to a different pattern.

In this work this form of stability of patterns is studied for a very simple
form of directed attack, namely an intruding antigen (see chapter 6). Such
an antigen is modelled by a chosen node in the network, that is held
occupied over a time interval. Depending on the position of the antigen
it induces establishment of a subpattern.

2.4.1 Example with determinant bit pattern dy; =4

In the parameter setting d =12, m =2, p = 0.055, [t;; t,] = [1,10] the dp =4
pattern (like in figure 2.6) becomes quite unstable and transitions in most cases
after a few thousand time steps to the dynamic dy; =11 pattern (like in figure
2.10). Preparing some of these d; =4 patterns and keeping track of the number
left while iterating, as shown in figure 2.21, shows that the transition follows a
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Bernoulli process. For every time step there is the probability p of the dy; =4
pattern to dissolve into a different pattern and the probability of the pattern
dissolving after exactly t + 1 time steps is geometrically distributed:

f(t) =p(1—p) (2.4)

(for t time steps no transition with probability 1 — p and the transition with
probability p in the t+1-th time step). It must be noted that such a pattern
transition does not happen in a single time step. Actually there are transition
states that can not be directly assigned to a particular pattern. But on the long
scale the transition probability follows that distribution.
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Figure 2.21: Number of d); = 4 patterns left after preparing 1000 of
those patterns and iterating.
[d=12, m=2, p=0.055, [t;; t,] =[1;10]]

Fitting the data in figure 2.21 by an exponential A - e yields A = 954.8 +0.3
and the transition probability in one time step of

p=1-¢'=3851-10"*+2-10"". (2.5)

A good tool for observing a pattern transition is a network topology plot.
The relative amount of nodes is plotted versus the number of occupied neigh-
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bours which these nodes have after the influx and before applying the update
rule. The plots show averages over some time steps (see captions). Apart from
the plot for the whole network (grey areas) topology distributions of groups
have been marked by colour according to the group. Figure 2.22 shows four of
these, before, during and after a transition from a dj; =4 pattern to a dp; =11
pattern.

The sharp peaks that one might expect from the group allocation (nodes
of a group all have equal number of occupied neighbours in a perfect static
pattern) have been widened by the non-zero influx. As seen in figure 2.22(a),
in the dy; = 4 pattern this widening leads the topology distribution of the
group S; to “leak out” of the [t;; t,] = [1;10] window: some of the otherwise
fully occupied nodes in group S; have neighbour occupation above t, and
become unoccupied. This in turn yields the topology distribution of the group
S> (which is suppressed by its neighbours in Sj) to leak into the threshold
window. Eventually some of the nodes in S; might become occupied and
themselves suppress their neighbours in Sy; if there are enough of them over a
sufficient time, the pattern changes.

During transition (figure 2.22(b)) the topology distributions of groups split
up and parts move. For instance, parts of the topology distribution of S; move
up and out of the threshold window (the nodes become unoccupied), parts of
the topology distribution of S, move into the window.

After transition to the dp; = 11 pattern topology distributions form new
peaks (figure 2.22(c)) which can be coloured again according to their affilia-
tion to dp; =11 pattern groups (figure 2.22(d)).
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(d) dp =11 pattern after transition (taken over 1500 iterations).

Figure 2.22: Network topology diagrams before, during and after the
transition from a dy; = 4 pattern to a dj; = 11 pattern. Grey areas
represent the whole network, groups are coloured differently. [d =
12, m=2, p=0.055, [t;; t,| =[1,10]]
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Decompositions and tilings

Understanding the dynamics of the network requires a good understanding
of its patterns. Thus, it is desirable to be able to classify patterns and to de-
termine which are possible and at what stability and which are not. Since
patterns have a regular structure on the underlying graph, a way to handle
patterns is to group together nodes with equal statistical properties (e. g. mean
occupation), i.e. to decompose the network into these groups as it has been
done using determinant bits (see section 2.1). With general decompositions
patterns could be classified based on the decompositions they fit in. Further-
more decompositions could prove useful for renormalisation approaches.

For a decomposition into groups of nodes that have the same statistical prop-
erties, the decomposition should be neighbourhood compatible. This means
that two given groups of such a decomposition independent of the node cho-
sen in the first group shall have the same number of neighbours in the other
group. Thereby ensuring that all nodes of a group are treated equally by the
update rule and thus have the same statistical properties (for a pattern that fits
into that decomposition). In the following when speaking of network decompo-
sitions it is implied that they are neighbourhood compatible.

A more general decomposition than the one based on determinant bits is
given in this chapter and is shown to help to construct patterns that rarely
appear by just using simulations. Those decompositions, “tilings”, are proven
to have strong algebraic properties and to be easily computable.
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3.1 Cayley graphs

The underlying graph of the model can be treated as a Cayley graph that
allows an easy study of it by algebraic methods and thus allowing to prove
some general statements about it.

Definition: As in [9], a Cayley graph T(G,S) is a graph whose nodes are ele-
ments of an (algebraic) group G (its group operation shall be ”+”). The
subset S C G defines the edges of the graph: Linkage from a nodea € §
to another node b € G is defined to exist if and only if there exists s € &
such that a 4+ s = b (i. e. starting from node a its neighbours are reached
by adding elements of S).

Of course, if the group G is abelian (elements commute under ”+”) the graph
is undirected (edges do not have a direction). If S generates G (i.e. every ele-
ment in G can be expressed as a sum of elements in S), the graph is complete,
i.e. there is a path from any node to any other.

3.1.1 The underlying graph as a Cayley graph

The node set of the underlying graph of the model, Gém), V = {0,1}9, is
indeed a group (actually it is even a vector space over the field F, = {0,1}),
the addition ”"+" is defined as the component-wise “exclusive or”:

040 = 0 141 = 0
140 = 1 04+1 = 1

The bit vectors in V' are written (ay,...,a4)" or a;...a; with equal meaning.
The edge-defining subset S C V in this case is the set of nodes with at least
d — m bits set to 1:

S={se€V;dy(s,0)>d—m}. (3.1)



That is, in order to get a neighbour of a node a € V one has to add an element
s € S thereby changing at least d — m bits of v. Since V is an abelian group the
neighbourhood defining statement can be reformulated:

a € Vandb €V are neighbours
& dseS:a+s=b (3.2)
< a+bed.

In the following the subgroup generated by aj,...,a, € V is used, that is the
subgroup of V, whose elements can each be expressed as a sum of some of
the generators aj,...,a,. Here, every element a € V is self-inverse, that is
a+a = 0. Furthermore, since all elements commutate, the subgroup generated
by aj,...,a, € Vis:

(ay,...,a,) = {ai1+...+ai],; 1<ip<...<ij<m, 1<j<n}. (3-3)

If m > 0, S generates the whole group V, that is (S) = V), thus the graph is
complete. The reason is that, if m >0, 11...11 € S (corresponding to the per-
fect complement) and 011...11, 101...11, ..., 111...10 € § (corresponding
to the complements with one mismatch). Thus,

011...11+11...11 = 100...00 € (S),
101...11411...11 = 010...00 € (S),
' (3-4)

111...10+11...11 = 000...01 € (S),

and obviously every a € V can be expressed as sums of these.

3.2 Tilings

Let T'(V,S) be the underlying graph of the model, Gl(im), with node set V re-
garded as a Cayley graph as described in the previous section 3.1. A possible
decomposition is the decomposition into equally sized parts with neighbour-
hood distribution among them ensuring the decomposition to be neighbour-
hood compatible. Such a decomposition shall be called “network tiling” (in
reference to tiling the network into tiles like a plain).
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Definition: A network tiling (A;);cr of T(V,S) is defined to be a disjunct de-
composition of the network into blocks

A CV, Aiﬂ.A]'ZQVi#j,i,]'GI, V:U.Ai, (3.5)
iel
satisfying:
1. The network is decomposed into equally sized parts, called “tiles” or
"“blocks”
Al = 4] Vijel (6)

2. Neighbours of a particular type (i. e. for a particular s € S) of a node
in a block A; belong to the same block as the neighbours of this type
of any other node in .4;. Put into a mathematical expression that is:

HSZ-]- C S, i,j €I, with
SiﬂSjIQVi#j, i,jEI, U]'GI S,']'IS, such that
Vijjel: a+S;={a+s;s€5;} CA Vac A (3.7)

In a more general decomposition the parts do not have to be of equal size.
For example, the group allocation according to determinant bits consists of
groups of different size. Nevertheless for tilings the parts are claimed to be
of equal size since this makes a very strong result as stated in the following
theorem possible. Symmetry analysis however supports the two concepts (see
section 4.1.3). Also, as shown in the previous chapter, the determinant bit
groups are made up of groups of equally sized blocks of the size of the smallest
group, So. Claim 1, equally sized parts of decomposition, implies |I| = 2%, k €
[1;d] (since |V| = 27) and therefore | A;| =27k Vi € I.

A weaker version of claim 2 is to simply claim the same number of neigh-
bours in a different block. Symmetry analysis, however, supports this version
of claim 2 (see section 4.1). It furthermore makes sense for the later introduced
weightings of links (see section 5.1).

The upside of using the Cayley graph concept on the network of the model
is a result on the nature of such tilings allowing to classify them easily and
calculating any possible tiling nearly without any cost. It is quite a strong



result that could be used to classify and describe every pattern observed up to
NOw.

Theorem: A network tiling (A;);c; of T'(V,S) is a decomposition of the net-
work into cosets. This means one of the A, is a subgroup (without loss of
generality Aj. It shall also have 0 € Ay),

Ayp is a subgroup of (V,+), written as Ay <V (3.8)

(i.e.0 € Apand a,b € Ay = a+Db € Ap. Also the inverse of every ele-
ment in Aj has to be in A, which is trivial in this case since all elements
are self-inverse).

Every other A;, i € I\ {0} is a coset of Ay,
A; is a coset of Ay, thatis A; =a+ Ay forac A4;iel (3.9)

(i.e. every A, is a "translation” of Ay, taking any a € A; every element in
A; can be reached by adding an element of A)

Proof: LetS;; C S,i,j€lasineq. (3.7).
1. Since eq. (3.7):

A+ Sij C .A]' Vi,jel, (3.10)

and with eq. (3.6) (since therefore also |x + A;| = |Aj| ¥x € V,i,j €
I):

s+ A = ./4] Vs € 51] (3.11)

2. Furthermore let x € V and i € I, then since V = (S), x can be
decomposed into

X=81+...+8;,, withsy,...,s; €S. (3.12)

Because Ujc; Sij = S, there is j; € I such that s; € §j;,. Likewise for
every k € [2,m] can be found a ji € I, such that

Sk € Sjk—ljk' (3.13)

49



Then with eq. (3.11):

Ai+x = Aj+s1+...+sy
= Aj+s2+...+sm (3.14)
= ... = A,

In total therefore

Viel,xeVdjel: x+A=A, (3.15)

3. Examine eq. (3.15) for i = 0:
xeVIdjiel: x+Ay= A (3.16)

Since x takes all values in V, j takes all values in I. But since 0 € Ay,
also x € A; must hold. Therefore:

x+Ag=A; Vxe A Vjel, (3.17)
and in particular
x+ Ay =Ayg Vxe Ay (i.e. Apis closed under "+”). (3.18)

And since furthermore 0 € Ay, Ap is a subgroup of V and A;, i € I
is a coset of Aj.

]

What is the use of this result? It has been shown that a decomposition that ful-
tils the two claims, such as consisting of equally sized parts, has to decompose
the network in an algebraic way into cosets. Since these cosets are uniquely
defined by the subgroup Ay of V, all tilings of V can simply be given by calcu-
lating its subgroups. This is fairly easy in case of the underlying graph, only
the generating elements have to be given.

Though, unlike for determinant bit groups, all patterns found in the context
of this work did fit into a tiling, these tilings might be so fine that they are of
little use. For example, a tiling defined by a subgroup of only two elements
only groups together two nodes, thus there are 2771 tiles. That is the case for
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dy =d—1 patterns. A concept combining tilings and determinant bit groups
would be desirable.

The following subsections give examples of how to apply tilings on pat-
terns and compare them to pattern describing concepts elaborated in previous

works.

3.2.1 Examples of tilings and their arrangement in blocks

As described in section 2.3.2 some patterns do not fit into determinant bit
indicated groups. The simplest example in the context of this work is the
pattern shown in figure 3.2.1, a “chess board” pattern without determinant
bits.

00000 00011
00101 00110
01001 01010

01100 01111
10001 10010

10100 10111

11000 11011

11101 11110

Figure 3.1: Left side: Pattern with d = 5, p = 0.02, started from
empty network, got established after 10% iterations and stayed al-
most static afterwards. [[f;;t,] = [1,7]];

Right side: Bit vectors of occupied nodes.

Applying the tiling concept this pattern perfectly fits into the tiling
Ap = (00011,00101,01001,10001) and A; = .Ap+ 11111. (3.19)

In this case Ay is the block consisting of all occupied nodes, A; the one with
all unoccupied nodes.

Also more general patterns such as in section 2.3.4 can be described by tilings.
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For example, the pattern of figure 2.17 (p. 35) does partly fit into groups
defined by determinant bits. But these groups again split up into parts that
have different statistical properties. Using a tiling defined by the subgroup

Ao = ( 100000001000, 100001000000,
100000000100, 000000100001,
100000000010, 000000010001,
100000000001, 010000000000 )

(3-20)

leads to tiles with equal statistical properties for nodes of each tile. Arranging
nodes according to A; leads to an arrangement as shown in figure 3.2(a).
Also the pattern of figure 2.18 (p. 36) fits into a tiling. This one is defined by

Ao = ( 010000000100, 000100000100,
010000000010, 000000100100, (3.21)
010000000001, 000000001100 ).

The corresponding arrangement is shown in figure 3.2(b).
The fully dynamical pattern in figure 2.20 on p. 37 (d =13, dj; =10) only fits
into a very fine tiling grouping four nodes together in tiles:

Ay = (0000000000011, 0000000000110 ). (3.22)

This is an example of semi-determinant bits (see next subsection). Whereas
the determinant bits are the ten leftmost bits, the three last bits, the non-
determinant bits, only appear in some combinations inside a tile (always either
an even or odd number of them set among nodes inside a single tile).
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(a) Blocks of the dj; =3 pattern shown in (b) Blocks of the dy; =5 pattern shown in

2.17 (p. 35). [started from prepared 2.18 (p. 36). [started from empty
pattern, means taken over 5 - 10* network, after 10° iterations means
iterations] taken over 6 - 10* iterations]

Figure 3.2: Blocks of two patterns shown in section 2.3.4. The nodes are
arranged in tiles, that are separated by lines. The tiles again were
arranged to be near the corresponding nodes in the arrangement
of section 2.3.4.

[p=0.02, d=12, m=2, [t;; t,] =[1;10]]

3.2.2 Tilings and determinant bits

Tilings are a finer decomposition than that by determinant bit groups. For
determinant bits as described in section 2.1 all group sizes are integer multiples
of 2974m (all values of non-determinant bits vary in a group), which is the size
of group Sg. Thus all groups themselves can be decomposed into blocks of
that size, nodes of each block having the same values in determinant bits. The
base tile Ay hence is generated by nodes which in turn generate all values in
non-determinant bits. In case of the determinant bits being the last d of all 4
bits, those are:

d—dyy Ay
170...00...0
01...0 0...0 (3.23)
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If a pattern fits into determinant bit groups a finer decomposition should not
be used. On the other hand, as seen in section 2.3.2, there are patterns that
have a priority in determinant bits (primary, secondary, ...) and do not fit into
groups induced by determinant bits. In those cases they still fit into the tiling
as described above.

As mentioned in [6, p. 26] there is a further concept regarding determinant
bits: semi-determinant bits. Semi-determinant bits are bits that are coupled
together in their value within determinant bits, e.g. for most occupied nodes
they have equal value. Tiling decompositions are consistent with them: cou-
pled determinant bits correspond to a generating bit vector of the base tile A
with these bits set to 1. For instance, if the last two bits are semi-determinant
the corresponding generating bit vector is 0...011. Then all vectors in .4y have
both bits set to 1 (unless of course other generating bit vectors have only one
of the last bits set to 1). Other tiles have values in them dependent on their
translation v + Aj.

3.2.3 Comparison to the module concept

In [7] and [10] patterns are described by pattern modules. A pattern module
is a lower dimensional sub-cube (or ”slice”) of the hypercube of bit strings in
a way that each block of a group according to determinant bits has one rep-
resentative in it. The linkage between the representatives of blocks is exactly
the neighbourhood distribution between the blocks. The whole graph thus de-
composes in those slices. This concept is complementary to the determinant
bit group concept in a way that it does not group nodes with equal statistical
properties but groups nodes that represent the structure of the whole decom-
position.

The tiling concept can be adapted to the module concept in following way.
Given a tiling (\A;)i—o ., a possible module M is

M=A{ay, ..., ay;, a, € A;,i=0,...,n}. (3.24)

All other modules are given by translations of M by elements b of Ay, My, =
b + Ap (in that way all translated representatives are still representatives of
the same tile, b + a; € A;, because Ay is a subgroup). Unfortunately there is
no natural way to choose the representatives ay, ..., a, (unless they describe
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determinant bits, in which case they can be chosen to span a sub-cube). The
module concept however has not been developed further.

3.3 The block-link matrix and pattern state vectors

3.3.1 The block-link matrix

Definition: Given a tiling (A;);—o,.. , of V the block-link matrix K € My, is
defined as

(K);; := Number of neighbours in A; of a node in A;. (3-25)

In case of determinant bits the network is decomposed in a tiling with n =
2M blocks, each block consisting of nodes with equal values in determinant
bits, but which vary only in non-determinant bits. The blocks shall be indexed
by the decimal representation of their part bit string of determinant bits and
the block-link matrix for d); determinant bits shall be noted Kj,,.

Any node v € A; has [ =d — dy(i,j) mismatches in determinant bits com-
pared to any node in block A; (dy(i,j) being the number of equal bits in the
binary representation of i and j). If [ > m the node v has no neighbours in
block A;, otherwise it has ZZZOZ (dfk’ij ) neighbours in it (m — [ further possible
mismatches in the d — d); non-determinant bits).

Thus, defining

i
Ndz

g
)= Y (d de), for dy<d, m<m, (3.26)
k=0

the block-link matrices for determinant bits can be computed in a recursive

manner:

K, — K(m,dM) (3.27)
dM - dM 3' 7

—(—1,1-1) (i, 1-1)
KdM = N(ﬁ | 1) N(ﬁl "y 1) € M2[><2[ (328)

Ky Ky© o

dyy Ay
=(m,0) il

Ry® = [N (3-29)

55



To get K;,, apply eq. (3.27), then eq. (3.28) recursively replacing Kb(i";’l) till 1 =0.

Finally eq. (3.29) gives the entries in the resulting matrix. There are at most
m + 2 different values of entries: Néﬁ), m=20,...,mand Né;{l) =0.

Explanation: Let Kéﬁ’l)
mismatches in | of dj; determinant bits. The indices of the first 2!~!

be the block-link matrix for a maximum of m possible

rows of this matrix correspond to blocks with the same value in the I-th
determinant bit (it is 0). Equally for those of its last 2/~ rows (it is 1).

Thus, nodes of the blocks corresponding to the first half of the rows (sec-
ond half respectively) are complements of other nodes of the same half
with at least one mismatch in determinant bits. Hence, for nodes among
one half to be neighbours they can have at most further m — 1 mismatches
in the other I — 1 determinant bits. For neighbours in the other half still
all m mismatches in the other | — 1 determinant bits are permitted.

On the other hand, the i-th row, 0 < i < 29M_1 (first half), and the (i +
29M)-th row (in the second half) of Kg,,+1 correspond to blocks whose values
in determinant bits only differ in the first determinant bit (the reason is the
ordering of rows and columns according to the decimal representation of the
values of the determinant bits). The j-th entry of the sum of those two rows
gives the number of neighbours of a node of block j in blocks i and i + 2.
These two blocks form the i-th block when considering only the last d of the
dy + 1 determinant bits as determinant. Therefore K;,, can be computed by
adding the part matrix consisting of the first half of the rows and the first half
of the columns of K, 1 to its part matrix consisting of the second half of the
rows and the first half of the columns:

1 La ..
KdM = 5 [Isz Isz] KdM-l-l [IZdM] , (Ik)ij = (51']', 1,] € [O,. ook — 1]. (3.30)
29M

The recursive construction of block-link matrices reveals their structural self-
similarity.



11 56
11
1

56 11
1
11

11
1
11 56

67 12
1
11
56 11

1 10 10 46
10 1 46 10

10 46 1 10

10

0 10 1

1

1
0

1 10 0

46 10 10 1

1

10

10

1

0
1

1 10 10 46
10 1 46 10

10 46 1 10

0 10 1

1 10 0 1

10

46 10 10 1

1 9 9 37
9 1 37 9
9 37 1

9
1
1

9
0

1
9 9 37 0

9
1

0 37 9 9

1
0

1
9

1

1 9 0 0 O

1

1

1 37 9

9 37 1 9
1

0
0

37 9 9

0

0
0

0
0

9 9 37
1 37 9

1
9

9
1
1

9 37 1 9
1

0
1

0 37 9 9

1
9

9 0 0 0 1

1

1
0

9 37 0

9

1 37 9 1

9

9

9 37 1
37

The first 5 block-link matrices for d = 12 and m = 2 for example are:

K3

Ky
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As the block-link matrix describes neighbourhood distribution among blocks
defined by a tiling, for groups determinant bits the link matrix is used. Devel-
oped in [11] it is defined as

Lij = number of neighbours of a node of group S; in group ;. (3.31)

Because tilings are a more general decomposition, in case of determinant
bits the block-link matrix can be used to calculate the link matrix. Without loss
of generality let there be d); determinant bits, each with determinant value 0
(otherwise consider a value 1 in one of these determinant bits as a deviation
from the determinant value). Then all blocks A with j bits set to 1 in k form
the group §;, thus:

L = )y (Kan) 1) (3:32)
ke(0; 29M-1]; dy(k,0)=]

(2 — 1 is the decimal representation of a bit vector with exactly i bits set to
1. Since all nodes in a determinant bit group S; have the same neighbour
distribution among other groups, it does not matter which block in S; is used
in the sum. Here 2’ — 1 was chosen.)

If the matrix rows and columns are sorted by the number of deviations from
determinant values (first row corresponds to no deviation, the next (d{” ) rows
correspond to one deviation and so on), the formula can be restated as

(‘M)

Lif - ]E)(KdM)(zi_l)’k—"_Z{O (dzlvf)' (3-33)

Summing up, the block-link matrix B;; describes neighbourhood distribution
among blocks (tiles) and, since determinant bit groups consist of equally sized
blocks, it can be adapted to the determinant bit group concept and thereby
be used to calculated the link matrix L;;. One application is the theoretical
construction of patterns as described in the next section.

3.3.2 The state vector of a pattern
Definition: The state vector z of a pattern with n Blocks is

z; := Mean occupation of nodes in block A;, i=1,...,n. (3.34)



For static patterns (then: z € {0,1}") every occupied block should have a
number of occupied neighbours in the interval [f; t,] and every unoccupied
blocks outside of it. Since (Kz); (K being the block-link matrix of that network
decomposition) is the number of occupied neighbours of a node in A;, the
equation of state of the pattern can be given:

XfZ?tu] (Kiyz) =z, (335)
where for A C R:

(n)

xa (%)= (xa(x1),..., xa(xa)) Vx€R", (3-36)
with  xa(x) = {O x4 Vx € R.
1 x€A

3.3.3 Solutions for static patterns with determinant bits for
d=12, [t;; t,]=[1,10]

Taking into account the nodes

xo := (0,0,0,0,0,0,0,0)7

x; = (1,0,0,0,0,0,0,0)T
(1,0,0,0,1,0,0,0)T (3-37)
( )

0,1,1,0,1,0,0,0)7,

Xy =
X3 =

heuristically a recursion formula for static patterns for d = 12 and [t;; t,] =
[1;10] can be stated. ”(e, ®)” is the vector concatenation, for instance, (x1,x3) =
(1,0,0,0,0,0,0,0, 0,1,1,0,1,0,0, O)T. Starting with state vectors for dy; =2 and
dp =3 patterns,

Zgy=3 = X2

_ (3-38)
Ziy=4 — (x3,x1),
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state vectors of higher d) patterns can be computed by successively replacing
pairs of part vectors (x;,x;) according to the rules ("—" means the substitu-
tion of the left side by the right side for every recursion step)

(x1,x1) — ((x1,x1), (x1,x1))
(x3,x3) — ((x3,%3), (x3,%3))
(x3,x1) — ((x3,%2), (x2,%1)) (3:39)
(x3,x2) —> ((x3,%3), (x3,x1))
(x2,x1) — ((x3,%1), (x1,%1))

Thus, replacing all pairs in a given z,,, of the above kind leads to z,,, 1 and
SO on.

This recursion formula yields state vectors for patterns with determinant bits
dy € {3,...,10}, that for every particular dj; can not be ascribed to patterns
with smaller d). For some d) solutions of eq. (3.35) also exist which have the
first i part vectors x3 of the state vector replaced by X3 := (0,0,0,1,0,1,1, O)T
and the last i part vectors x; replaced by xo (with i = 1 this is possible for
dy € {6,7,8}, with i = 2 for dyy = 8, with i = 3 for dy; € {8,9}).

This method has been used to obtain the static patterns given as examples
in section 2.3.3. It is important to mention it does not give all possible static
patterns (some of the patterns in section 2.3.4 can be static for p =0, but are not
reached by this recursion formula). For dj; > 10 no static patterns satisfying
eg. (3.35) seem to exist. Unfortunately it is hard to check this issue, because of
the immense calculational effort (22dM calculation steps).

Some dynamical patterns arise from static patterns. For p > 0 some nodes
in A; with (Kz); < t; have a non-negligible probability to become occupied by
the influx and to survive the update afterwards. The number of such blocks
and the sensitivity of the pattern towards them is crucial for its stability.

A more general approach to theoretically construct patterns is the mean field
approach. The nodes are assumed to be independently occupied with a given
probability which leads to an equation of state for these. Steady macrostates
are fixed points of this equation. It has been started in [12] and further stud-
ied in [13] using determinant bit groups. The adaption of the tiling concept
might be useful to get more general patterns. It might as well be easier for
the approach to be performed due to its equally sized parts and a very regular
neighbourhood distribution among tiles.
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Symmetry

The underlying network is not only a regular graph (i.e. all nodes have the
same number of neighbours) but also highly symmetric. This chapter gives an
overview about the symmetry properties of the underlying network and the
established network in case of patterns.

4.1 Symmetries of the underlying network

Studying the symmetry of the system means looking for its symmetry group,
i.e. the algebraic group of operations the network is invariant under their ac-
tion. In case of a network a symmetry group element, a symmetry operation, is
a map that maps every node one-to-one to another while all connected nodes
stay connected after mapping them (they are neighbourhood compatible). Since
the network is mapped to itself its symmetry group is its automorphism group.

Three cases of parameter settings lead to pathological situations. If m =0,
every node is only connected to its perfect complement and the graph decom-
poses into these pairs of nodes. In this case the symmetry group is huge, for
example, every permutation of a given node with its complement is a sym-
metry operation. If m > d—1, all nodes are directly linked to each other (for
m =d every node is even connected to itself). Also for this case the symmetry
group is extremely large and in its structure different from those for smaller
m. For these reasons, the symmetry analysis is limited here to networks with
0 <m < d—1(and thus d > 2).

For such a network there are two easy-to-find types of symmetry operations:

* Translations by v € V, i.e. mapping each a € V to a + v as described in
subsection 3.1.
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That is, the translation by v swaps bit values in a in every position v
has bit value 1 in. Translating two nodes a,b € )V by v leaves their
Hamming distance invariant (bit values are swapped in both a and b in
same positions, thus they still differ in the same bit positions): dy(a +
v,b+v) = dy(a,b). Therefore it does not change the links between
nodes because those are defined by the Hamming distance between them.
Translations are hence symmetry operations.

They form the group (V, +) = Z§.

e Permutations of bits, T € Sy, i.e. mapping each (ay,...,a;)T =a € Vto

(an(l), . ,Iln(d))T = 7'((&1).

A permutation 7 when applied to two nodes a,b € V permutes the bits
in both nodes in the same way and hence leaves the Hamming distance
between them invariant: dy(7t(a), 7(b)) = dy(a,b). Again, it does thus
not change links between the nodes. Permutations therefore are sym-
metry operations, too. Furthermore transpositions are used. These are
permutations that only swap two bits at position i and j, written 7;;).
The permutations form the group S;.

Therefore the symmetry group of the network is at least V x S; (every combi-
nation of those translations and permutations can be written as one translation
followed by one permutation). It is inherited from the underlying hypercube
structure.

4.1.1 Dependence of symmetry on d and m

As said above, depending on the number of allowed mismatches, m, there
are pathological networks with totally different symmetry. For the interesting
range of m, 0 <m < d—1, however, are the translations and permutations the
only symmetry operations? And how does the symmetry group for a given d
depend on m? Are there differences between networks of different d?
Computing the size of the symmetry group for a given network is tedious
and algorithmically very sophisticated. An algorithm for general networks has
been developed in [14] and implemented in the nauty program [15]. In the
context of this work it was applied on the underlying graph of the model only
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for networks with d up to d =16 (computational effort is too large for larger d).
The size of the symmetry group turns out to be:

| Aut() | 24 . d! if (d — m) even, (4.0)
u = :
29 (d41)! if (d —m) odd. i

Interestingly the types of symmetries do not directly depend on m, but on
the parity of (d—m). For even (d—m) the only symmetries are translations
(| V |= 2% of them) and permutations (| S; |= d! in total). For odd (d—m)
however there are additional symmetries, which appear to be some kind of
permutations, enlarging the permutation group to Sy 1.

A proof showing the symmetry groups are of that kind for all d >2 would
exceed the frame of this work. However it is believed that the results also hold
for larger d.

4.1.2 The 0 symmetry operations

As seen in the previous section, there are additional kinds of symmetries for
odd (d—m). These are named o operations. Certain types of them are ¢;, i €
{1,...,d}. o; swaps the i-th bit for every node with an odd number of bits set
among the other d—1 bits and leaves the other nodes as is. The reason why
0; are symmetry operations only for odd (d—m) is explained in the following
tigure 4.1.



dH:d—m

] (0, a) (115(”1))
odd numbe; 1
pf bits set o1, if (d —m) odd
n a (then odd number .
a1 of bits set in a(™)) o, if (d —m) even
(then even number
of bits set in a("))
(1,a)
dy=d—m—1 (1,alm)

Figure 4.1: A node v = (0,a) € V and one of its m-mismatch neigh-
bours, (1,al™)), being mapped by ¢7.
The rectangles represent nodes (their bit vector given inside). A
thick line between nodes represents their connection in the net-
work with the Hamming distance between the nodes given at the
line. The connecting, but crossed out grey line indicates that the
two nodes are not directly linked in the network, again with the
Hamming distance given. The arrows show the mapping of nodes
done by o, with cases given next to the arrow.
ac {0,1}9 1 is the part vector with the bits in positions 2, ...,d of
node v and a™ is its complement with exactly 7 mismatches. It
shall have an odd number k € IN of bits set to 1.
Therefore there are d—1—k bits set to 1 in a, the perfect complement
of node a. And since m of the bits of al") differ from those in a, a"™
has an odd number of bits set if and only if ((d—1—k+m) odd) <
((d—1+4m) even) < ((d+m) odd) < ((d—m) odd). For that rea-
son (1,a™)) is mapped to (0,a™)) by o7 if and only if (d—m) odd.
Otherwise the link is broken, indicated by the grey crossed out line.

Similarly, in case of odd (d—m), o; does not break linkage between nodes
with Hamming distance dyy > d—m and is thus a symmetry operation in that
case.

Looking at its behaviour together with permutations, one finds, that ;5 com-
mutates with all permutations that leave the first bit untouched (those permu-



tations do not change the parity of number of bits set in position 2, . ..,d, which
determines, whether ¢y changes the first bit or not):

0q 0 n(ij) = 7-[(1']') om VZ,] € {2, c.. ,d} (4.2)

(o is the concatenation of operations, i.e. in 7, o 7y, 77 is applied first, followed

by Tz).
For a transposition that affects the first bit holds:

010 7(14) = 0 © 01, (4-3)

Proof: Leta;...a; = a € V. To determine 07 o 7(y;) © oy(ay ...a4), cases have
to be discussed separately:

1. If a;...a; has an odd number of bits set:

010 n(li) o0 (Ell .. .ad) =010 7'[(11-) (ﬁlaz e ad)

_ (4.4)
=0 (ﬂiaz e di1Maigq ... ad).

a) Ifap...a;_qa1a;yq...a4 has an odd number of bits set:
Then (because a5 ...a; has an odd number of bits set) a; = a;
(a1 =a, respectively) and a; ...a;_1a;41 . .. a4 has an even number
of bits set, thus

(051 (aiaz . ai_lﬁlaiH .. Eld) =qa;ap.. .ai_lﬁlaiﬂ ... ag
=ayay...0; 14i8i1...a4 (4.5)
= 0'1'(611 .. le).

b) If ay...a;_141a;41 ...a4; has an even number of bits set:
Then (because a5 . . . a4 has an odd number of bits set) 2 =4; and
aj...a;_1ai;1 -..a; has an odd number of bits set, thus

op(ajay...a; 100,41 ...04) = ajay...a;_1014;11...44
=aday... ai_lﬁiaiﬂ ... ag (4.6)
=oi(ay...ay).

2. If ap...a,; has an even number of bits set:

o107y 001(ar...az) =010 (ar...aq)

(47)
=0 (()li{lz ce 1M ait ... ad).



a) If ap...a;_1a1a;y1...a4 has an odd number of bits set:
Then (because a5 ...a; has an even number of bits set) a; = a;
(a1 =a; respectively) and

g1 (aiaz e 0i101a541 - . . ad) =ajay...a;_1M1a;41...44
=aap.. .ai_lﬁiaiH ... ag (4.8)
= 0','(&1 .. ad).

b) If ap...a;_1a1a;41 ...a4 has an even number of bits set:
Then (because a5 ...a; has an even number of bits set) a; = a;
and

o (ajay...a; 101041 ...44) = ajay...0;_1010;41...04
=ayay...0; 14;8i1---a4 (4.9)
= 0'1'(111 NN lld).

In total,

010y 001(ar...ag) = oi(ar...az), (4.10)

and since o7 o 07 = id (applying oy twice does not change anything
since if the first application changed one bit, it is changed back by
the second application. id is the identity operation)

o107ty (ay...a) = ojooy(ay...a). (4.11)
[

In the combination with transpositions, as described in eq. (4.2) and eq. (4.3),
o algebraically acts like a transposition of the first bit with another ”d + 1-th”
bit, written symbolically as X:

01 = T(x1)- (4.12)

An analogous result holds for all ¢; and general ¢ operations consist of trans-
positions, like all permutations, but including a 0;. In case of odd (d—m) they
therefore extend the symmetry subgroup of all permutations, S;, to Sj41.
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Summing up, the automorphism groups for 0 < m < d—1 (hence d >2) are:

Z8xS;  if (d—m) even,

(4.13)
Z8 x Sgy1 if (d —m) odd.

Aut(G) = {

Unfortunately for d =3 it is m =1, thus the smallest d with odd (d—1) isd=4
and m =1, which is hard to visualise.

All these considerations are given a graph without different link weightings
(see section 5.1). In case of different link weightings w, # w,,—1 (m = max{i €
IN; w; # 0}), the additional symmetries 0; are not automorphisms in any case
since they map a node pair of m-mismatch neighbours to a m — 1-mismatch
node pair. For instance, for odd (d—m) and o7 reconsider (0,a) as in fig-
ure 4.1. (0,a) and (0,a"~1)) are m-mismatch neighbours, but are mapped to
(1,a) and (0,2~ 1)), which are m — 1-mismatch neighbours. Also other graph
topological changes might break symmetry, for instance, shifted neighbours as
described in section 5.3.

4.1.3 Symmetry and network decompositions

Looking at the two types of network decompositions done so far, one sees they
follow certain symmetries of the underlying network.

A tiling (A;)icr (see section 3.2) is invariant under translations v € Ay:
adding v to every node leaves nodes in the same tile as before (since A; are
cosets of the subgroup Ay). Other symmetry operations break allocation of
nodes to tiles. Thus, its symmetry group is Ag, which is a subgroup of the
symmetry group of the underlying network,

Ap QY = 74 < Aut(G). (4.14)

A decomposition into groups according to djs determinant bits (see section
2.1) is invariant under translations by v € Sy =: Aj since Sy actually is a
base tile and thus a subgroup (see section 3.2.2). Furthermore any permuta-
tion of determinant bits of all nodes leaves them in the same group as before
(the group allocation only depends on the number of deviations from the de-
terminant values in the determinant bits, which is not changed by such per-
mutations). This yields the symmetry group S;,, of those permutations. The



grouping is also invariant under permutation of non-determinant bits corre-
sponding to the symmetry group S;_g4,,. The total symmetry group again is a
subgroup of the symmetry group of the underlying network,

Ao x Sy X Si—ay, IV x S5 = Aut(G). (4.15)

Actually all network decompositions into disjunct sets of nodes should be
invariant under a subgroup of the symmetry group of the underlying network,
thereby ensuring the neighbourhood distribution among those sets is invariant.
Thus, in general there might be a network decomposition for every subgroup
of Aut(G), under which the corresponding decomposition is invariant. For
subgroups of the V = Z4 part of Aut(G) these are tilings. Determinant bit
groups then are a mixture of simple tilings (according to determinant bits) and
decompositions corresponding to subgroups of the S; or S;,1 part of Aut(G).

Altogether any neighbourhood compatible decomposition consists of groups
of tiles of a tiling, groups invariant under a subgroup of S; (S441), e. g. determi-
nant bit groups. Thus, a generalisation of the determinant bit concept taking
into account general tilings would be desirable.

4.2 Pattern symmetries

As the network establishes patterns some of the symmetries of the underlying
graph are broken. A pattern is defined by the probability of occupation for
each node, that is constant as long as the pattern is adhered to by the network.
Hence a symmetry operation of a pattern must keep these probabilities invari-
ant, i.e. has to map nodes to nodes with the same probability of occupation.
Moreover it has to be neighbourhood compatible and as such has to be an ele-
ment of the symmetry group of the underlying network. The symmetry group
of a pattern thus is a subgroup of the symmetry group of the underlying net-
work. If it fits into a network decomposition (as all patterns found so far do), it
inherits its symmetry group and adds symmetries to it that interchange decom-
position parts with same occupation probability. As the network evolves not all
symmetries can be broken for patterns to emerge. From all possible patterns
and their symmetry the update rule chooses those that have node occupations,
according to the influx parameter p, fulfilling the window thresholds [t;; t,].
Again one might assume there are patterns for every subgroup of Aut(G),
which such a pattern is invariant under, as long as it is compatible with the
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window threshold. The additional types of symmetries for odd d—m might
thus be an explanation for more general patterns appearing in simulations in
that case than for even d—m. Examples for these have been given in section
2.3.4.

And though the large symmetries of the underlying network are due to the
simplicity of the model, patterns are comparably stable against local symmetry
defects and perturbations (as seen in chapter 5).

4.2.1 Symmetries for determinant bits

In case of patterns that fits into the group allocation according to determinant
bits the symmetry group is easy to determine. The symmetries of the decom-
position according to determinant bits was deduced in the previous section
(see eq. (4.15)). Further symmetries would interchange nodes between groups,
which is only valid for groups with same statistical properties. In determi-
nant bit patterns found so far, however, such a symmetry operation can not be
of translation or permutation type (they would, for instance, map the single
group of highest mean occupation to a different group of lesser mean occupa-
tion). Altogether the size of the basic symmetry group Aut,,, of such a dy
determinant bit group is (from eq. (4.15)):

| Auty,, | =297 . (d —dpp)! - dag!. (4.16)

The dependence of this size on dy; for d = 12 is shown in figure 4.2. The
stable patterns (see section 2.3), e.g. dy; = 4, seem to have higher symmetry
than less stable patterns, e. g. dy;=7. Of course, some patterns have very high
symmetry but are not possible due to the window thresholds (e.g. dy; =3 for
[t;; tu] =[1;10]). Also this only holds for small influx parameter p. For larger
p the purely dynamic patterns such as dj; =d—1 dominate.

Furthermore possible are ¢ symmetries as in section 4.1.2, which are symme-
try operations for the underlying network for odd d—m only. For patterns on
the other hand the conservation of neighbourhood between blocks is important
so o-operations can rearrange nodes inside blocks while leaving the determi-
nant bits untouched. For even d—m they might break neighbourhood between
nodes, but leave neighbourhood distribution among groups invariant, thereby
being a quasi-symmetry. For the purely dynamic patterns, such as dy;=d—1
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Figure 4.2: Size of the basic symmetry group eq. (4.16) for different d,
in case of d =12. The dashed line indicates the size of the advanced
symmetry group with the quasi-symmetry as described in the next
section for dy;=11.

patterns, the o-symmetries seem to play an important role, see next section
4.2.2.

The number of symmetries of a pattern should not be confused with its
degeneracy. Whereas the symmetry is a property of a particular pattern with a
particular choice of determinant bits, the degeneracy of a pattern is the number
of configurations of determinant bits that lead to the same kind of pattern,
i.e. another pattern with the same dj;. For determinant bits the degeneracy of
a pattern with dj; determinant bits is ( d‘jw)2dM, that is the number of possible
choices of dj; determinant bits out of the d bits and their d); values.

4.2.2 Quasi-symmetry for purely dynamic patterns

Purely dynamic patterns have groups of similar statistical properties depend-
ing on the influx parameter p (nodes with higher mean occupation “fill up”
the first Ld%lj groups. Two examples are given in figures 2.10 and 2.11). Ap-
plying a o-operation breaks direct symmetry but can rearrange blocks between
adjacent groups. The link violation (as described in subsection 4.1.2) is com-
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pensated by the grouping of nodes in blocks, the linkage between blocks stays
as-is.

Details are given for the case dy; =d—1 with even d—m. In such a pattern
nodes are grouped together in blocks varying only in one bit (same bit for
all blocks). That is the non-determinant bit. Treating blocks as single nodes
corresponds to a d' =d—1 system in which ¢ is a symmetry operation. Thus,
o1, for instance, swaps the first determinant bit depending on the parity of
number of bits set in the other d—2 determinant bits. In that way some blocks
in each group according to determinant bits are exchanged with blocks in an
adjacent group. In a dy;=d—1 pattern on the other hand most adjacent groups
have similar mean occupation; the pattern is altered in a small way using a
o-operation and the S;,, symmetry subgroup (see eq. (4.15)) is increased to
Sd,,+1 Which increases the size of the symmetry group by the factor dp+1 = d.
Hence, in case of even d —m the symmetry group of dy; =d—1 patterns is larger
than that of dj); =d patterns (for d =12 the dashed line in figure 4.2).

This increased symmetry could be one explanation why d; =d—1 patterns
are favoured over d); = d patterns in case of even d—m whereas it is the op-
posite case for odd d—m. It might also explain, why these patterns are most
stable (least likely to rotate) in their most static forms (in which difference of
mean occupation in adjacent groups is least). The behaviour of dy; = d—1
patterns is based on that of d, = d’ patterns in a smaller d' = d—1 network,
they simply handle two nodes (differing only in the non-determinant bits) as
one. Taking advantage of this fact might lead to a method for renormalisation,
that ascribes behaviour of general purely dynamic patterns to purely dynamic
dpy =d patterns (by grouping nodes to yield a smaller d’ network with a d, =d’
pattern).

The same thoughts hold for other purely dynamic patterns, such as for dy;=
d—3 for d = 10 and m = 2 (thus, d —m even), see figure 2.20.

4.2.3 Pattern rotations

For high influx parameters p the dj; = d—1 patterns undergo transitions to
other dj; = d—1 patterns, that is one of the d—1 determinant bits becomes
non-determinant while the former non-determinant bit becomes determinant
(see figure 4.3). Such transitions can be described by rotations of the vector
representing the state of the network (done in [8, sec. 7.2]).
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Figure 4.3: Components of the centre of mass vector of a prepared
dy = 11 pattern. Whereas it is stable for ¢+ € [100;400], it under-
goes a transition in t € [400;500] to a different dy; = 11 pattern:
one determinant bit (green) becomes non-determinant and a non-
determinant bit (yellow) becomes determinant instead, the pattern
“rotates”. [d=12, m=2, p=0.08, [t;; t,] =[1,;10]]

A different approach is using the Cayley graph concept and the symmetries
of the underlying network. During a rotation of a dy; = d—1 pattern a for-
merly determinant bit becomes non-determinant while the non-determinant
bit becomes determinant. Thus, the transition can be described by swapping
those two bits (a permutation). If the value of the formerly determinant bit
differs from the value of the newly determinant bit, it has to be complemented
(a translation, adding a node with solely one bit set to 1 in position of the
formerly non-determinant bit). In total, that is a symmetry operation of the
underlying graph, but not of one of the patterns, thus changing them.

For other patterns the application of such operations yields other stable pat-
terns that have not yet been discovered simply by observation of simulations.
The dj; = 3 pattern with chess board subpattern in figure 2.17 (p. 35), for in-
stance, was constructed by starting with an ordinary dj; = 4 pattern with the
first four bits determinant. On the first d—1 = 11 bits o; was applied (ignoring
the last bit, as for a d = 11 network) thus breaking the symmetry yielding a
different kind of pattern.
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Extensions

5.1 Link weightings

So far the underlying network of the model was defined by the complements of
the nodes considering mismatches up to a certain number of them. In that way
every kind of neighbourhood is taken equally into account, i.e. independent
of number of mismatches, when calculating number of occupied neighbours
before doing the update. A more realistic approach would be to think of lesser
binding affinity between an antibody of one idiotype and one of another id-
iotype the more it differs from perfect complement of the first one. Then the
stimulation of a B-cell would be lesser the more the antibody binding partners
differ from their perfect complement. In our model this can be realized by
introducing link weightings: Depending on the number m of mismatches from
the perfect complement, occupations of the neighbours of a node are weighted
by a factor w,, when calculating the total neighbour occupation of that node
for the update rule:

dun (V) = Z Z .wi : n(vl)' (5.1)

In that way for the modelled stimulation of the B-cells of type v the presence of
antibodies of type v’ is weighted depending on its number of mismatches from
the perfect complement of v. The underlying graph then becomes a weighted
graph where links between nodes are weighted according to the w;.

Looking back at the jigsaw picture underlying the bit string idea one might
as well think of mismatches that are crucial for an antibody-antibody interac-
tion to take place: There might be some kind of mismatches that are “deadly”,
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i. e. totally suppressing interaction, e. g. by having an unfortunate spacial struc-
ture. Realising that in the bit string model either some links could be removed
depending on the probability of them relating to a deadly mismatch. Unfortu-
nately that would make the model and its calculation much more complicated
and harder to survey. Alternatively all links of a relating mismatch could be
weighted depending on the probability of one of the mismatches being deadly.
This idea was first elaborated in [8, ch. 4], given here are simply some correc-
tions.

Let p € [0;1] be the probability of a mismatch being deadly, i. e. suppressing
interaction between antibodies at all. For simplicity this probability is sup-
posed to be independent of the position of the mismatch on the bit string.
Looking at an i mismatch neighbour of a node the probability of none of these
mismatches being deadly is simply (1 — p)’. Since this is the amount of i mis-
match neighbours that are supposed to be able to bind the weighting according
to i mismatches is:

w; = (1-p)". (5.2)

Since 0 < 1 — p < 1 this weighting decreases exponentially with i. Therefore
even wy > 0, i. e. even the interaction of an antibody with another of its same
idiotype is taken into account, but with a very small weighting. Though this
might appear strange at first sight, idiotypic self-binding has been shown to
exist in nature (e. g. in [16]). The corresponding antibodies are termed autobod-
ies. As shown later these autobodies do not have big influence on the results
of the model.

On the other hand the number of i mismatch neighbours increases fast with
i by (f) Since summing neighbour occupations is the most computationally
intensive part of the simulations, for sake of economic calculations summing
the neighbour occupations should be done just up to those of mismatch i with
a weighting w; greater than a threshold wy;esp014-

Even for a threshold that yields summing neighbour occupations up to 2
mismatches the variety of patterns appearing increases vastly compared to
simple link weighting of 1. In figure 5.1 a configuration with link weightings is
compared to one without by computing the Shannon entropy over a range of
the influx parameter p. Whereas for the system with link weightings different
patterns appear, the system without link weightings shows only one in the
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Figure 5.1: Comparison of simulations without and with link weight-
ings. For each of 100 p-values in [0.05;0.07] 100 simulations were
run and after 500 iterations the Shannon entropy was taken over
another 10° iterations.

[d=12, [t;; t,| =1[2.75;10]]

same range of p (a larger range for p for a system without link weighting is
given in figure 2.1 on p. 14).

75



5.2 Further occupation states

In the basic model every node can be occupied, i.e. antibodies of the corre-
sponding idiotype are present, or not. A more realistic approach could take
into account antibody concentrations by using more than those two node occu-
pation states. Whereas in the basic model n(v) € {0,1}, using discrete N € IN
occupation states means n(v’) € {0,...,N —1}.

For two occupation states as done so far the B-cell response is modelled
by the window rule: to get stimulated the concentration of the binding part-
ners of the antibodies on the B-cell has to be in the window interval [t;; t,].
For further occupation states the binding partner concentration has to yield a
response depending on its size. Experimental results and theoretical consider-
ations (e.g. given in [5]) highly suggest a log-bell-shaped response curve, see
also figure 5.2. For determining binding partner concentrations nodes are

response

\

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(weighted) sum of neighbour occupations

Figure 5.2: Schematic of modelled B-cell response according to con-
centration of binding partners. The smooth curve is a possible (re-
alistic) log-bell-curve and the thick black piecewise constant func-
tion represents a possible modelled response for N = 5 occupation
states. The grey area is the response modelled so far by the window
rule, here [t;; t,] = [1;10].
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taken into account with their occupation state number in eq. (1.2), respectively
eq. (5.1) for weighted links.

Some simulations have been done, most of them using N = 5 occupation
states. Using a response function as in figure 5.2 many patterns show up with
quite similar structure as for the basic model with two occupation states. For
instance, figure 5.3 shows a dy; = 10 pattern very similar to the well-known
dp = d — 1 pattern in the basic model. In this case highly occupied nodes in the
group Sy, ...,S3 show all occupation states, mostly the higher ones, whereas

the group S4 only reaches occupation states 0 and 1.

Figure 5.3: d) = 10 pattern in case of 5 possible node occupation
states. Black box sizes in left picture (snapshot) according to node
occupation state: the bigger the box the higher the state. The struc-
ture is similar to the purely dynamic patterns such as the dy;=d—1
pattern in figure 2.11 (p. 28).

[d =12, wy =1, w; = 0.5, wy = 0.25, response function as in figure
5.2, p = 0.08, started from an empty network, after 103 iterations
means taken over 10° iterations]
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5.3 Generalised antibody interactions

In the basic model binding of antibodies is assumed to cover the whole binding
site, i. e. partial binding is not allowed. One might also think of a possible real
binding that takes place on part of the binding sites only. A way to extend
the model in that way is to allow nodes to have additional neighbours that
only have a shifted complement with up to some mismatches. Those kinds of
neighbours shall be called ”shift-neighbours”.

Let (v1,...,v4)T = v € V then its perfect complement shift-neighbours are of
the form (a,...,94,9')" and (v/,0y,...,04_1)" (' € {0,1} being an arbitrary
bit value). Schematically shift-neighbours with a shift of 1 look like:

a a az ... djg_1 4ag
/l\
complementary vector parts
up to mgp;r; mismatches

1
by by ... by bgq1 |by

i.e. the antibodies of corresponding idiotypes bind on parts of their binding
sites. Using those additional kinds of neighbours the highly symmetrical and
regular (all nodes have the same number of neighbours) underlying graph gets
local symmetry defects. An extreme example are some nodes becoming self-
linked, e. g. the alternating bit vector 1010...10. Those bit vectors correspond
to real antibodies being able to bind themselves, so called autobodies which
have been shown to exist in nature.

Simulations have been done using 1-shift-neighbours without weighting, for
no mismatches in vector parts and with up to one mismatch. Figure 5.4 shows
examples of dyy = 4 and dy; = 11 patterns for d = 12 and different shift-
neighbours. Almost the same patterns as without shift-neighbours appear, the
defects only show local effects, e. g. suppressing mean occupation of autobod-
ies.

Though these changes are small (4 additional neighbours in case of no-
mismatch shift-neighbours compared to 79 ”“ordinary” neighbours for d = 12)
it is quite astonishing that the dynamic behaviour of the networks shows to be
quite resistant to topological perturbations like these.
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(a) dp = 4 pattern. Underlying network (b) dp = 4 pattern. Underlying network
with shift-neighbours with no with shift-neighbours with up to one
mismatches, p=0.02, [t;; t,] =[1;10]. mismatch, p=0.015, [t;; t,] =[2;10].

(c) dyr = 11 pattern. Underlying network (d) dp = 11 pattern. Underlying network
with shift-neighbours with no with shift-neighbours with up to one
mismatches, p=0.05, [t;;t,]=[1;10]. mismatch, p=0.04, [t;; t,] =[2;10].

Figure 5.4: Comparison of dy; =4 and djs =11 patterns with different
no-mismatch shift-neighbours (left side) and up-to-one-mismatch
shift-neighbours (right side). Because of the self-linkage for many
nodes in case of one-mismatch shift-neighbours, the lower thresh-
old t; has been raised to 2 for these cases (otherwise the system
shows the purely dynamic dy; = 11 pattern already for small p).
Please note the greyscale is the same for both cases, but for more
allowed mismatches in shift-eighbours the patterns get more dy-
namic.

[d =12, m =2, started from an empty network, after 103 iterations
means taken over 10° iterations]
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Antigens and their influence on the
network

One of the great powers of the adaptive immune system is its capability of
memorizing once arisen antigens. This memory enhances it to fight a pre-
viously encountered antigen more efficiently. Apart from being an essential
advantage of species with an adaptive immune system the principle of vacci-
nation is based on that memory.

In sense of idiotypic networks an antigen is believed to induce a stronger
concentration of antibodies that can bind the antigen and which itself induces
concentration of other bind-able antibodies. These again are believed to keep
the concentration of the first antibodies high even after the antigen has van-
ished. They are thus called the internal image of the antigen.

Started in [8], introducing antigens into this model shall be studied further in
this chapter. The parameter setting used so far is introduced as well as the pro-
cedure of modelling the intrusion of an antigen and its effects on the network.
The antigen turns out to induce transitions of the network state. An attempt to
understand that mechanism is made using the tiling concept. Furthermore pos-
sible internal images of the antigen are identified and an outlook is given to a
simpler parameter setting and to the effect of several simultaneously intruding
antigens.

In [8] a parameter setting has been given that yields a pattern that might as
well establish subpatterns. That setting has been used for results given here. It
is the parameter choice

d=12, p=0.06, [t;;t,] = [2.75;10],
with weighted links wp=1, w; =0.5, wy=0.25, w3 =0.005.
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6.1 Subpattern transitions

The parameters have been chosen for the network to develop a dj; =1 pattern,
i.e. with two groups. The group Sp with a mean neighbour occupation above ¢,
thus being highly occupied and the less occupied group S; due to suppression
by a mean neighbour occupation of slightly above t,. Details for the case of no
subpattern are shown in table 6.1.

after influx, before update
So 0.444 £ 0.003 4.083 £ 0.003
S1 0.0460 + 0.0005 | 10.741 £ 0.007

group | mean occupation | mean neighbour occupation

Table 6.1: Statistical properties of nodes in groups without subpattern.
Shannon entropy S & 0.630. Means taken over 10° iterations, errors
given are statistical errors of summing over nodes in a group.

The djr =1 pattern again appears in seven different forms. It either has no
subpattern or one of six possible types of subpatterns. Nodes in these sub-
patterns can be arranged in four different sets with equal statistical properties
among the nodes in a set:

J S(()high): very highly occupied nodes in Sy,

low

J S(() ): less highly occupied nodes in Sy

. Sglow): slightly occupied nodes in S;, of same size as S(()low)

o s\"); almost always unoccupied nodes in Sy, of same size as 5"

The different kinds of subpatterns can easily be distinguished by their char-
acteristic Shannon entropy and differ in the sizes of these sets, that are in fact
sets of tiles. An overview of them is given in figure 6.1. The larger the almost
static sets S"¢") and $\”"""%) are, the smaller the Shannon entropy of the pattern
and the more stable it seems to be (less fluctuations due to the influx possible).
Nevertheless the larger these sets the less often the pattern appears in simu-
lations, the S = 0 pattern (see figure 6.1(f)) actually has never been observed
when starting with an empty network.

The possibility of a pattern to establish different forms of subpatterns ap-
pears to be a way of realising a memory effect in the network. Mechanisms as

introducing an antigen turn out to trigger switches to a different subpattern.
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(a) Subpattern with S~0.462, |S(()high) | =512

(b) Subpattern with $~0.312, \S(()high) | =896

(c) Subpattern with S~0.254, |S{"¥")| = 1024

Figure 6.1: Possible subpatterns of the dy; = 1 pattern. Each one is
arranged as in section 2.2 in the left part. The right parts show the
block arrangements as in section 3.2.1 and figure 3.2 (p. 53). The
darker a grid point the higher the mean occupation of the corre-
sponding node. Means were taken over 1.2 - 10° iterations.



$~0.128, |S\"8" | = 1280

(e) Subpattern with S~0.047, |S(()high) | =1536

(f) Subpattern with S=0, |S{"")| =2048

Figure 6.1: (continued)



6.1.1 Introducing an antigen

In this model every node of the graph represents an idiotype, i.e. a certain
binding type of antibody. Though in biology the kinds of binding an antigen
is dependent on the paratope of the antibody, in the simple model an antigen
can as well be represented by a node in the network (actually it may be repre-
sented by several nodes according to how many different binding sites it has).
An intruding antigen is modelled by a node whose occupation is held high in-
dependent of influx and update, that is antigens of that type are present. When
switching the antigen off that node is simply taken back to follow the ordinary
rules like all the others.

Depending on the pattern there are several possible choices of nodes to rep-
resent the antigen each one with different influences on the rest of the network.
Putting it into a highly occupied area of the network does make little sense as
it would hardly be possible for the network to distinguish that always occu-
pied node from other highly occupied ones. Putting it in a group of nodes that
are lowly occupied because they have neighbour occupation below t; does not
make much sense either: such an antigen would likely not be fought by the
network at all. Though of course in reality there might be such unfortunate
antigens, to model the memory effect it is best to choose a node representing
the antigen that is lowly due to suppression by highly occupied neighbours.
For the parameter setting used here the antigen turns out to induce a subpat-
tern that decreases the mean occupation of the node formerly representing the
antigen.

In the djy; =1 pattern without subpattern there are two possibilities to place
the antigen: the group Sp or S;. As stated above, the less occupied group S;
(since suppressed by highly occupied neighbours) is the better choice. Figure
6.2 on the next double page step-by-step explains the observed stages. Starting
with a dj; =1 pattern without subpattern, (a), an antigen is inserted into group
S1. This node influences its neighbours, their neighbours, and so on, in a way
that some nodes in Sy are more likely to have a neighbour occupation above
the lower threshold ¢; and thus have a higher mean occupation. Some nodes in
S1 then again become less occupied in means because they become more likely
to have a neighbour occupation above the upper threshold ¢,. This state stays
for some time, (b), till it undergoes a very rapid transition (in the order of 100
iterations) to a stable state with subpattern, (c). That stable state even stays
after the antigen is switched off, (d).



preparation of dy; =1 pattern without subpattern

(a) Simple dy; =1 pattern without subpattern.

1

insertion of antigen into S;

1

antigen antigen

(b) After the antigen has been inserted (position marked), some of the
nodes are encouraged, some are suppressed in their occupation due to
the antigen. If the antigen is switched off before the pattern undergoes
transition, it falls back to the pattern as in subfigure (a). Though a
transition state, it has been taken means over to smoothen the mean
occupations.

transition to pattern with subpattern occurs

(continued on the next page)
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(continued)

gntigen gntigen
D

(c) The pattern has established a subpattern. Still some of the nodes are
exceptionally highly or lowly occupied because of the antigen.

!

deactivating the antigen (it becomes an ordinary node again)

(d) Pattern with subpattern after the antigen has been switched off. The

subpattern stays stable. S~0.462, \Séhigh) | =512.

Figure 6.2: Different stages of the network for antigen induced subpat-
tern transition. For each stage the pattern is shown arranged as in
section 2.2 in the left part. The right parts show the block arrange-
ments as in section 3.2.1 (see also figure 3.2 on p. 53) according
to the blocks the finally reached subpattern fits into. The darker
a grid point the higher the mean occupation of the corresponding
node. In every case means were taken over 1.2 - 10° iterations.



6.1.2 Subpatterns induced by the antigen

When inserting an antigen like described above the pattern always seems to
make transitions to the same kind of subpattern. Even without an antigen
such subpatterns are established but with a much smaller probability. This
can be quantified by preparing many d;=1 patterns without subpatterns and
observing each of them over time, with an inserted antigen and without. This
results in a “pattern decay” as shown in figure 6.3. The subpattern moreover
seems more stable than the pattern without subpattern (less transitions back

to a pattern without subpattern).
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Figure 6.3: Number of networks without subpattern left after prepar-
ing 2000 dp; = 1 patterns without subpattern and iterating. 1000
of these patterns were inserted an antigen into group S;. Over
each 200 iterations the Shannon entropy was taken to distinguish
between patterns with and those without subpatterns.

[d =12, wo =1, w; = 05, w, = 0.25, wz = 0.005, p = 0.06,
[t tu] =[2.75;10]]

Fitting data in figure 6.3 yields the transition probabilities: The data with
network preparations without an antigen were fitted by a linear function A(1+
At) (not enough data to properly fit an exponential function, but an exponential
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function Ae* can be approximated by such a linear function for small |At|).
This yields a transition probability for one time step of

—1-¢"=1462-10"°+6-107°. (6.1)
o

The data corresponding to network preparations with an antigen inserted into
group S; had to be fitted by a sum of exponentials A4 1 - ettt 4 A Ag2" Mgt
which fits much more nicely than a single exponential. The fit yields transition
probabilities for one time step and the corresponding amount of transition
modes:

Aagr =266+2

6.2
pag1 =1—eMel =211-107°£1077 (6.2)

and

Apgy =722+2

6.
Pagr =1-— eMs2 =1.068-1074+5-107. (63)

Thus, an antigen increases the probability of establishing a subpattern by two
orders of magnitude and one might say the antigen “induces” a subpattern.

Moreover there are at least two modes of transition for the transitions in-
duced by the antigen. For instance, there could be different types of subpat-
terns the pattern establishes. They have not been distinguished when doing
the simulations of figure 6.3. The modes have not been studied further here,
but seem to play a larger role for transitions due to two antigens as in section
6.2.2.

In direct observation the antigen induced a subpattern of type identified by
520.462 and \S(()hlgh) | =512 (see figure 6.2(d)). Its statistical properties after 10°

iterations after switching off the antigen is shown in table 6.2.



subgroup | mean occupation | mean neighbour occupation

after influx, before update

s{sh 109976 £0.0003 | 4.777 4 0.001
sl 0.336 = 0.002 3.922 + 0.002
silow) 0.0537 +£0.0005 | 10.438 + 0.006

(
1
S%empty) 0

15.966 + 0.004

Table 6.2: Statistical properties of nodes in subgroups after an antigen

induced the subpattern. Means were taken over 10° iterations after

the antigen was switched off. Errors given are statistical errors of

summing over nodes in a subgroup.

The subgroup corresponding to the tiling (see section 3.2) such a subpattern

fits in nicely is of the form (permutations of the bits are possible. Here, the
determinant bit shall be the first bit):

Ap = ( 010000000000,
001000000000,
000100000000,
000010000000,
000000000111

000001000000,
000000100000,
000000010000, (6.4)
000000001000,

).

This kind of tiling has been used to group together nodes in figure 6.2 and will

be referenced further on when using blocks of the established subpattern. De-

pending on the determinant value [y of the determinant bit, the tilings belong

to sets as following (Iy is the complement of Io):
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(581 — Ay + 1500000000000,
S\mPY) - — A + 1500000000000,
s{™ = (Ag + 1500000000001)
U(Ap + 1500000000010) 65)
U(A + 1500000000100,
siow) = (Ag + 1500000000001)
U(Ap + 100000000010)
U(Ag + 1500000000100).



The node formerly representing the antigen, /00000000000, gets located in
Sgempty) (high)

and is thus suppressed by the highly occupied group S, °".

So why does the antigen increase the probability of establishing a subpattern?
As proven in section 3.2 every pattern has to fit into some tiling (that might as
well be trivial). In this parameter setting only six different stable subpattern
types appear possible. Therefore if the antigen is to induce a subpattern that
is stable after switching off the antigen, it has to be one of these. This switch
of pattern structure realises a memory, the memory of the antigen is “stored”
in the subpattern.

Looking at the direct effect the antigen has as an always occupied node in an
otherwise less occupied group, leads to a way to explain the induced transition.
As shown in figure 6.2(b) the antigen enforces occupation of some nodes in the
group Sy (in particular its neighbours and their neighbours in that group) by
lifting their mean neighbour occupation above the lower threshold ¢;. In an
analogous manner it suppresses its neighbours and their neighbours in group
S1 (by lifting their mean neighbour occupation above the upper threshold t,).
Most of the enforced nodes turn out to be in the highly occupied set S(()high) and

t .
mPY) after transition

most of the suppressed are situated in the unoccupied Sg
(compare the right sides of figures 6.2(b) and 6.2(c)). In a way the direct influ-
ence of the antigen “pushes” the pattern towards a specific kind of subpattern.
Because of fluctuations due to the influx the subpattern is eventually estab-
lished and stays since it is more stable than the pattern without subpattern.
This idea shall be quantified in the following. Since a pattern is defined by
the mean occupation of its corresponding tiling of nodes, a difference between
patterns (or states of constant mean occupation in a window of time) can be

defined in the following way:

Definition: The sum of squared differences (SSD) between state 1 (with mean
occupations pg)) and state 2 (with mean occupations p‘(,z)) is defined as

2
SSD(LZ) = EVEV <p‘(11) - Pj(:z(z,)> ’ (66)

with f € Aut(G) being a network automorphism (as in section 4.1) that
yields the smallest SSD.

In this case of subpatterns, f has to map the dj; =1 groups of pattern 2 to the
corresponding group of pattern 1.
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Computing the SSD between a dj; =1 pattern without subpattern and with-
out antigen and the subpattern as induced by an antigen (the S~0.462 subpat-
tern) yields SSD~176. The SSD between the same pattern without subpattern
but with one antigen and the subpattern induced by that antigen afterwards,
on the other hand, is SSD ~ 163. Hence, the antigen as an always occupied
node changed the mean occupation of its neighbours and their neighbours
(and so on) in a way that got it closer in sense of mean occupation of nodes
to the S ~ 0.462 subpattern. In figure 6.2(b) the increased and the decreased
mean occupation of some nodes (especially neighbours of the antigen and their
neighbours) can be seen clearly. Arranging the nodes in the same blocks as
those of the induced subpattern, elucidates the small SSD: the block with most

increased mean occupation becomes S(()hlgh), whereas the block with most de-

creased mean occupation becomes Sgemp & ), see figure 6.2(d).
Other subpatterns on the other hand are more distant. An overview of the
sum of square differences between the possible subpatterns and a dy; =1 pat-

tern without subpattern but with one antigen in S; is given in table 6.3.

entropy S(+0.001) |S{"$")| SSD (+1)
0.630 - 19
0.462 512 163
0.312 896 305
0.254 1028 373
0.128 1280 472
0.047 1536 546
0 2048 613

Table 6.3: Properties of possible subpatterns and their sum of square
differences to the pattern without subpattern but with one antigen.
Means were taken over 10° iterations.

Which kind of subpattern and which of its realisation (defined by the base
tile Ap and the mean occupation of tiles) is chosen depends on the influx and
is thus subject to coincidence. It has been shown here that an S ~ 0.462 subpat-
tern is established most likely. Nonetheless there are several realisations of that
pattern with the same SSD and thus the same probability to be established.

6.1.3 Internal images of the antigen

After the antigen is switched off, i. e. the node formerly held occupied is treated
by the influx and the update rule again, the pattern remains stable (as seen in
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tigure 6.3 the pattern with subpattern actually is more stable than the one
without subpattern). It can therefore be said that the network memorizes the
antigen by changing to a different substructure. Following the basic idea of
the memory effect as introduced in the beginning of this chapter, the antigen
might be memorized by its internal images in the network.

As shown in the previous section the antigen is suppressed by its highly
occupied neighbours, the antibodies fighting it. Their higher occupied neigh-
bours again enforce occupation of these antibodies and keep them occupied
even after the antigen has vanished. They are in this case the internal images
of the antigen.

In this parameter setting neighbours of nodes are weighted differently. Many
slightly occupied nodes weakly linked to the antigen might suppress it as long
as they are enough. In the same way a huge set of nodes might be the internal
images of the antigen. Here, the most important candidates for internal images
shall be determined, i. e. highly occupied internal images that have largest pos-
sible and altogether sufficient influence on the antibodies fighting the antigen.
The influence a node has on its neighbours is given by the summand it has in
the sum of neighbour occupations when applying the update rule (eq. (5.1)).
For N nodes each of mean occupation (1) their mean contribution to a com-
mon m-mismatch neighbour in its sum of neighbour occupation is given by:

N - w,, - (n). (6.7)

First, the most important antibodies fighting the antigen have to be iden-
tified. This is done examining the block-link matrix for the subpattern for
neighbours of different numbers of mismatches (see table 6.4). Since these
are weighted according to the number of mismatches the block-link matrices
should be weighted as well (see table 6.5), each entry thus corresponding to
the factor N - wy in eq. (6.7). Now, since the antigen is in set """, the rows
of S") give the weighted number of neighbours of the antigens in the other
blocks.

Taking into account the mean occupations of groups (see table 6.2, (S\""""")) =
0, <S§l°w)) A 0.054<Séhigh)> ~1, (Sélow)> ~ 0.34) the most important antibodies fight-
ing the antigen can be determined, shown in table 6.6, as well as from that the

most important internal images, given in table 6.7.
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H Sgempty) ‘ Sglow) ‘ S(()high) ‘ S(()low)

sgemw‘y) 1
(low) ! 1
S
! 1
S(()high) 1
1
S(()Iaw) 1
1
(@ym=20
S%empty) Silow) S(()hzgh) S(()low)
glempty) 1 8 |1 1 1
1 1 8§ 1 1
syow) 1 1 1 8 1
1 1 1 1 8
s 8 |11 1] 1
1 8§ 1 1 1
sé’ow 1 1 8 1 1
1 1 1 8 1
by m=1
H S%empty) ‘ Sglow) ‘ S(()high) ‘ S(()low)
glempty) 8 1 1 1] 28 |9 9 9
1 § 1 1 9 28 9 9
sglow) 1 1 8 1 9 9 28 9
1 1 1 8 9 9 9 28
s st 2 |9 9 9] 8 |1 1 1
9 28 9 9 1 § 1 1
561010) 9 9 28 9 1 1 8 1
9 9 9 28 1 1 1 8
(c)m=2
H Sgempty) I Sglow) ‘ S(()high) ‘ S':()low)
st I o8 [ 9 9 9| 57 |36 36 36
9 28 9 9 36 |57 36 36
55’“”) 9 9 28 9 36 |36 57 36
9 9 9 28| 36 |3 36 57
siM | 57 36 36 36| 28 |9 9 9
36 57 36 36 9 28 9 9
551010) 36 36 57 36 9 9 28 9
36 36 36 57 9 9 9 28
(d) m=3

Table 6.4: Block-link matrices for different numbers m of mismatches
(see section 3.3.1, each only for m-mismatch neighbours). Since the
sets 5" and $!"“) each consist of three blocks, they each span over
three columns and rows. Empty entries are of value 0.



H S:(Lempty) ‘ S:(Llow) ‘ S(()high) ‘ S(()low)

( t
Slemp y) 1
) 1
S(low 1
! 1
(high)
S 1
1
1
S(()Ow) 1
1
(@ m=20
Sgempty) Sglow) S(()high) S(()low)
slempty) 1 05 40 |05 05 05
05 05 |40 05 05
gilow) 0.5 05 |05 40 05
05| 05 |05 05 40
sy | 40 |05 05 05[] 05
05 |40 05 05 05
sl 05 |05 40 05 05
05 |05 05 40 0.5
(b) m=1
H Sgempty) ‘ Sglow) ‘ S(()high) ‘ S(()low)
s [ 20 o025 025 025| 70 |225 225 225
025 | 20 025 025 ]| 225 | 70 225 225
silow) 025 | 025 20 025| 225 |225 7.0 225
025 [025 025 20 | 225 |225 225 70
5 70 225 225 225| 20 |025 025 025
225 | 70 225 225]| 025 | 20 025 025
sglm") 225 | 225 70 225| 025 [025 20 025
225 [225 225 70 | 025 | 025 025 20
(c)m=2
H Sgempty) ‘ Sglow) ‘ S((]high) ‘ S(()low)
s [ 014 [ 0045 0045 0.045] 0285 | 018 018 0.8
0045 | 0.14 0045 0045 | 0.18 | 0285 0.18 0.18
gllow) 0.045 | 0045 014 0045 | 0.18 | 0.18 0285 0.18
0.045 | 0045 0045 014 | 0.18 | 018 018 0285
s{sh 0285 | 018 018 018 | 0.14 | 0.045 0.045 0.045
0.18 | 0285 018 018 | 0.045 | 0.14 0045 0.045
sllow) 018 | 018 0285 0.8 | 0.045 | 0.045 0.14 0.045
018 | 018 0.18 0285 | 0.045 | 0.045 0.045 0.14
(d) m =3

Table 6.5: Weighted block-link matrices for different numbers m of mis-
matches (see section 3.3.1, each only for m-mismatch neighbours
weighted by the weighting of such links, w;,). Since the sets S
and s{” each consist of three blocks, they each span over three

columns and rows. Empty entries are of value 0.
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Inset m N Contribution Neighbours of antigen

(eq- (6.7))  (Ag = 000000000000)

s o 1 1 111111111111
S(()hlgh) 1 8 4 lay...a9111 (one O in ay ... ag)
s{sh) o o8 7 1ay...a9111 (two 0 in a, . . . ag)

Tab

Total: 37 12> t,

le 6.6: Highest occupied nodes that are responsible for the non-
occupation of nodes in ;"% due to lifting their mean neighbour
occupation above the upper threshold t,, other contributing nodes
have mean occupation of 0.3 and less. The set they belong to is
given, as well as the number of their mismatches from their neigh-
bours in $;""%), the number of such nodes (see also tables 6.4 and
6.5) and their mean contribution to the mean neighbour occupation
of their neighbours (according to eq. (6.7) and table 6.2).

Since the antigen lies in that group, these are the most important
antibodies fighting it. For an antigen Ag = 000000000000 (then,
the determinant bit /p has value 1) their form is given in the last
column.

Inset m N Contribution Neighbours of antibodies above
| (eq. (6:7)
S(()hlgh) 1 1 0.5 1b, . ..bg000 (no mismatch in by .. . bg)
S(()hlgh) 2 8 2 1b; ... bg000 (one mismatch in by . .. bg)
S((]low) 2 3 0.25 1b; ... bg100 (no mismatch in b, . .. by)
1b; ... b9010 (no mismatch in by ... by)
1b; ...b9001 (no mismatch in by ... by)
Total: 12 275=¢
Table 6.7: Highest occupied nodes that are responsible for the almost-

sure occupation of nodes in S,"8" due to lifting their mean neigh-
bour occupation above the lower threshold ¢;, other contributing
nodes have mean occupation of less than 0.3 and have a smaller
contribution in sum. The set they belong to is given, as well as the
number of mismatches from their neighbours in $,"¢", the number
of such nodes (see tables 6.4 and 6.5) and their mean contribution
to the mean neighbour occupation of their neighbours (according
to eq. (6.7) and table 6.2).

Their form as neighbours of the antibodies above (in table 6.6) is
given in the last column for sets as in eq. (6.5) (again the determi-
nant bit [y has determinant value 1).



Putting the tables 6.6 and 6.7 together, the internal images are nodes of the
form (in situation of eq. (6.5) and a determinant value of 1 of the determinant
bit ly, the antigen then is Ag = 000000000000):

Vint = 1C2 ngldzdg,

with dy=dy=d3=0
and up to 3 bits of value 1 in c; ... ¢ (others of value 0), (6.8)

or with one of dq,d», d3 of value 1 (others of value 0)
and up to 2 bits of value 1 in ¢, ... c9 (others of value 0).

These are in fact N = (5) + 3) + B) + D) +3- (B) + §) + (§)) = 204 different

nodes (approximately  of the whole network). An amount of (§5) + () + (5) +

(3) = 93 is situated in the set s{"s" and 3 - G+ +G) =111arein s\,
Some of them are quite similar to the antigen (Ag = 000000000000): 4 internal
images is of Hamming distance 1 to the antigen, 4 - (?) = 32 are of distance 2,

4 - (3) = 112 are of distance 3 and () = 56 are of distance 3 to the antigen.
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6.2 Outlook for introducing antigens

6.2.1 Simpler parameter values

The property of having patterns with several possible kinds of stable subpat-
terns is necessary for a setting to show a memory effect behaviour like de-
scribed above. This property has yet only be discovered using weighted links.
For sake of less intensive computability it is desirable to use as few neighbours
as possible. In fact 3-mismatch neighbours seem to play a negligible role due
to the small weighting w3 =0.005 (e. g. compare the weighted block-link matrix
for 3-mismatch neighbours to the other block-link matrices in table 6.5).

As seen in figure 6.4 almost the same behaviour as above can be seen chang-
ing w3 =0 and p =0.065. In that case four instead of five possible subpatterns
emerge (the S = 0 subpattern does not emerge when starting an empty net-
work). This is the simplest setting with possible memory effect found so far.

0.7 | | | 100 0.7 | | | 100
[ e - - --'_"——--.._____.L ]
u; 0.6 30 u;\ 0.6 . 30
é‘* 0.5 — . ) — é‘* 0.5 — ..,_.:
T 04 B0 =04+ - 0
] (9]
§ 03 - ~—— @0 §03[ ~f 40
£ 02 - - 02 - —
< il
» 01 — | 20 % 01 — e 20
0 : ‘ B — 0 0 ‘ ‘ 0
0.05 0.055 0.06 0.065 0.07 0.05 0.055 0.06 0.065 0.07
p p
(a) wo=1, w1 =0.5, wr, =0.25, w3 =0.005 (b) wo=1, w1 =0.5, wr,=0.25

Figure 6.4: Shannon entropy histogram for different link weighting
settings. For each of 100 p-values in [0.05;0.07] 100 simulations
were run and after 500 iterations the Shannon entropy was taken
over another 103 iterations. [d =12, [t; t,] =[2.75;10]]

6.2.2 Introducing a second antigen

A realistic antigen has more than one type of epitope, i.e. binding sites anti-
bodies can bind to. Such an antigen therefore could be represented by more
than one node in the network. As well, the network should have the ability to



memorize more than one antigen. Keeping this in mind, simulations have been
done treating two nodes instead of one like an antigen, i. e. holding it occupied
regardless of the dynamic rules. Both nodes were chosen in group S; of the
pattern without subpattern.

500 | \ \ !
| one antigen ——— dg=6 —

dg=1 —— dy=7

400 - di=2 di= 8 a
dg=3 — dg=9 ——
d = 4 d = 10

300 | H H
dy=5 — dp=11

200 [+

100

AL O
NMM%&M SR A po st evon, )
& A o)
‘ |

patterns without subpatterns left

| MU

0 e AR et o |
0 10000 20000 30000 40000 50000 60000 70000

t
Figure 6.5: Number of networks without subpattern left after prepar-
ing 500 dp1 =1 patterns without subpattern for each possible Ham-
ming distance dy of two antigens in group S;.  [d =12, wy =1,
w1 =0.5, w,=0.25, w3 =0.005, p=0.06, [t;; t,] =[2.75;10]]

As seen in figure 6.5 their influence on the network vastly depends on the
similarity of the two nodes representing antigens (similarity in sense of their
Hamming distance). Whereas the presence of a second antigen in medium
distance to the first one (dg =5 or dy = 6) highly enforces the establishment
of a subpattern, the transition probability for closer or more distant antigens is
less. A most distant second antigen (dy = 11) even suppresses it. Again there
are two modes of decay with different transitions probabilities. One of these is
highly enforced by a second antigen (many decays in the first 1000 iterations).
The possibility of two antigens inducing transitions to patterns with different
kinds of subpatterns depending on the similarity of the antigens should further
be inspected as the ability of the network to memorize two antigens might be
based on that.
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In this chapter a setting was studied that yields several possible stable subpat-
terns with transitions between them. These transitions can be induced by an
inserted antigen. Using methods developed in previous chapters an explana-
tion for the transition probability thereby being increased has been discovered:
the antigen “pushes” the pattern towards a certain subpattern in sense of a dis-
tance defined between patterns. Moreover the antibodies fighting the antigen
and the internal images of the antigen could be identified. Further research
is suggested to use a simpler parameter setting and to study the influence of

more than one antigen.

100



Conclusion

Patterns in the bit string model of idiotypic networks are the central subject of
this work. A visualisation of them was developed, that proved useful when
trying to discover substructures in patterns described by determinant bits so
far. Several pattern examples could be given using that visualisation and by
finding patterns with the numerical tool of the Shannon entropy. The concept
of topology diagrams furthermore helped to get an idea of what stability of
a pattern depends on and how pattern transitions happen. Moreover, for the
same example the transition probability was determined.

Looking at patterns emerging led to a more general classification of patterns:
the decomposition into tilings. Using the Cayley graph concept it could be
shown to be complete in for patterns with equally sized blocks. The block-link
matrix, the link matrix conveyed to the tiling concept, and the pattern state
vector have been defined. Among other issues, they are useful to construct
more general patterns some of which do not emerge in simulations.

Even more general patterns could be given using results from symmetry
analysis. This furthermore suggested a more general decomposition, in partic-
ular, a mixture of tilings and determinant bit groups. The symmetry operations
were identified and shown to be only indirectly dependent on the number m
of allowed mismatches. A class of symmetry operations was discovered that
are only symmetry operations for odd d—m. They have been suggested as an
explanation for certain purely dynamic patterns, such as the dy;=d—1 patterns
and could be of help for renormalisation.

The effect of some extensions of the model on its emerging patterns have
been discussed. They can be used to make the model more realistic. Especially
weighting of links results in an increased variety of possible patterns. Even
variations of the network topology such as shifted neighbours turn out to have
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a small influence on the structure of patterns emerging though they vastly
decrease symmetry.

Many of these newly developed concepts were applied to a scenario of an
intruding antigen. The mechanism of modelling an antigen was discussed
and an explanation was given for the transition to a different subpattern it
induces. Those subpatterns were analysed in detail and the most important
internal images of the antigen were identified. For classifying and studying
the subpattern the tiling concept proved its great usefulness.

The model this work is based on is not only interesting for modelling its real
nature counterpart. It is one of the first of its kind combining the concept of a
cellular automaton on a network with probabilistic rules. Models of this kind
might be studied for modelling many complex systems in nature. Though its
rules are fairly simple a very complex behaviour emerges. Many of its aspects
are not clearly understood yet and lots of approaches to it are thinkable.

For understanding patterns more deeply the tiling concept could be gener-
alized to develop a classification concept for all patterns possible. Symmetry
analysis is of use here. With its algebraic description it can easily be applied
in calculations. Especially in the mean field approaches it might prove to be
more useful. Patterns also play an important role in modelling mechanisms as
observed in nature. One of these is the intrusion of an antigen. Here, analysing
influence of an antigen on the network structure and its appearing subpatterns
should be continued. Also the capability of several antigens, either appearing
simultaneously or sequentially, to switch between subpatterns is of interest.

Concluding, there is still a long but exciting way to go to fully understand
the model and to convey results on its designated subject, the adaptive immune
system.
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