All slides are available at [www.pik-potsdam.de/~menz/CapTainRain/Webinar](http://www.pik-potsdam.de/~menz/CapTainRain/Webinar)
Introduction into regional climate scenarios and sensitivities of heavy rainfall indicators

Christoph Menz
RDII
Potsdam Institut for Climate Impact Research
### Table of Content - Introduction - Climate Change - Climate Change from Global Climate Models Persepctive - Climate Change from Regional Climate Models Persepctive - Brief Introduction to Bias Adjustment - Projected Precipitation Change in Jordan

# Introduction - Climate Change
## Assessment Reports ### WG1: Physical Science Basis

1990
1995
2001
2007
2013
2021
414P
588P
893P
1007P
1552P
3175P
### Temperature
### Precipitation
Global mean annual changes 1971-2100 vs. 1971-2000 IPCC AR5: CMIP5 IPCC AR6: CMIP6 RCP2.6/SSP1-2.6: Sustainable development RCP8.5/SSP5-8.5: Fossil-fueled development
### Temperature
### Precipitation
Global mean annual changes 2071-2100 vs. 1971-2000 IPCC AR6: CMIP6 SSP5-8.5: Fossil-fueled development
# Climate Change from Global Climate Models Perspective
\begin{equation} \nonumber \rho \frac{d \vec{\mathbf{v}}}{d t} = - \vec \nabla p + \rho g -2\vec{\mathbf{\Omega}} \times (\rho \vec{\mathbf{v}}) - \vec \nabla \overleftrightarrow{\mathbf{t}} \end{equation} \begin{equation} \nonumber \frac{d \rho}{d t} = - \rho \vec \nabla \vec{\mathbf{v}} \end{equation} \begin{equation} \nonumber \rho \frac{d q^x}{dt} = - \vec \nabla \vec{\mathbf{J}}^x + I^x \end{equation} \begin{equation} \nonumber \rho \frac{d e}{d t}=-p \vec \nabla \vec{\mathbf{v}} - \vec \nabla (\vec{\mathbf{J}_e} + \vec{\mathbf{R}})+\epsilon \end{equation}
## Development of Global Models
#### RCP: Representative Concentration Pathways #### SSP: Shared Socioeconomic Pathways - Scenarios representing greenhouse gas concentrations in the atmosphere - Narratives for future socio-economic evolution - No adaptation/mitigation to climate change - Similar in CMIP5 and CMIP6 - van Vuuren et al. (2011) and Riahi et al. (2017)
Historical
Observations
RCP2.6
SSP1-2.6
Peak around 2040 (490ppm)
400ppm in 2100
RCP4.5
SSP2-4.5
moderate increase
650ppm in 2100
RCP8.5
SSP5-8.5
strongest increase
1370ppm in 2100
## Temperature vs Precipitation 2071-2100 vs. 1971-2000 - annual mean
Global
Amman
## Distribution of Precipitation
# Climate Change from Regional Climate Models Persepctive
## Evolution of daily mean precipitation
## GCM
## RCM
### CORDEX - Coordinated Regional Downscaling Experiment - Description for 14 Regions accross globe - Most Regions in different resolution (~50km, ~25km and ~12.5km)
#### Boundary Problem - RCMs are limited area models driven at boundaries by external forcing (usually Reanalysis or GCM data) - Discrepancy in spatial and temporal resolution of RCM and driver - Leads to boundary effects - Boundary zone coupling: \begin{equation} \nonumber \psi^{n+1} = \psi^* - \alpha_b (\psi^* - \psi^{n+1}_b) \end{equation} Davis (1976, 1983)
Spatial: ~250km → ~25km Temporal: ~6h → ~0.1h
#### Which should be used for Jordan?
#### Which should be used for Jordan?
RCP 2.6
RCP 4.5
RCP 8.5
CORDEX-EUR44
CORDEX-EUR11
~50km
~12km
11
18
21
17
26
37
CORDEX-MNA44
CORDEX-MNA22
~50km
~25km
1
-
4
1
4
2
CORDEX-MED11
~12km
-
-
-
# Model BIAS
### Temperature Bias - Annual - Ensemble Median - 1981-2010

### CORDEX-MNA44
### CORDEX-MNA22
### CORDEX-EUR11
### Precipitation Bias - Annul - Ensemble Median - 1981-2010

### CORDEX-MNA44
### CORDEX-MNA22
### CORDEX-EUR11
### Temperature and Precipitation Bias Seasonality

1971-2005 Observation: E-OBS v19.0e 37 CORDEX-EUR11 Models
- Underestimation of wet season (NDJFM) temperature and precipitation - Overestimation of dry season (JJAS) temperature and precipitation - Precipitation bias up to 1/5 in wet season and twice pre and post dry season observation
# Brief Introduction to Bias Adjustment
## Example of Model Bias
JJA Temperatures, Bangladesh
## Example of Model Bias
JJA 1971-2000, Amman
## Example of Model Bias


2021-2050
2071-2100
Boberg and Christensen (2012)
## Bias Adjustment - Workflow
#### Chosen Bias Adjustment Method - ISIMIP3BASD method used for bias adjustment - Parametric quantile mapping - Trend preserving


1981-2010
Annual - Ensemble Mean
### Temperature Bias

### CORDEX-MNA44
### CORDEX-MNA22
### CORDEX-EUR11
#### non-adjusted
#### adjusted
1981-2010
Annual - Ensemble Mean
### Precipitation Bias

### CORDEX-MNA44
### CORDEX-MNA22
### CORDEX-EUR11
#### non-adjusted
#### adjusted
1971-2005 Observation: E-OBS v19.0e 37 CORDEX-EUR11 Models
MPI-ESM1-2-HR
CCLM 4.8.17
- 1971-2000
# Projected Precipitation Change
- Global climate model projections of - CMIP 5: up to 42 simulations - CMIP 6: up to 41 simulations - Regional climate model projections of - CORDEX-MNA44: up to 4 simulations - CORDEX-MNA22: up to 2 simulations - CORDEX-MNA44: up to 37 simulations - Bias adjustment using ISIMIP3BASD - Projections until 2100 under - RCP 8.5 - Fossil-fueled development - Focus on Amman and surrounding area - Focus on ETCCDI indices
### Climate Change Signal - NDJFM 2071 - 2100 vs. 1981 - 2010
CMIP5 RCP 8.5
CMIP6 SSP5-8.5
CORDEX-MNA44 RCP 8.5
CORDEX-MNA22 RCP 8.5
CORDEX-EUR11 RCP 8.5
Temperature
Precipitation
#### Precipitation Events --- number of rainy days (RR1) ≥1mm --- number of vey wet days (R20mm) ≥20mm --- NDJFM --- Projection period 2071-2100 Reference period 1981-2010 --- 90% significance level
CORDEX-MNA44
CORDEX-MNA22
CORDEX-EUR11
(≥1mm)
# rainy days
days (≥20mm)
# very wet days
#### Precipitation Events --- Seasonal maximum precipitation (RX1day) --- Reference period 1981-2010

NDJFM
JJAS
#### Generalized extreme value distribution --- Annual maximum precipitation Empirical distribution fitted to GEV probability density --- Projection period 2071-2100 Reference period 1981-2010 ---

Standardized pdf
\begin{equation} f(s;\xi) = \begin{cases} \exp(-s) \exp\Bigl(-\exp(-s)\Bigr) \& ~~ \text{ for } ~~ \xi = 0 \newline {} \newline \Bigl(1+\xi s\Bigr)^{-(1+1/\xi)} \exp\Bigl(-(1+\xi s)^{-1/\xi}\Bigr) \& ~~ \text{ for } ~~ \xi \neq 0 ~~ \text{ and } ~~ \xi \, s > -1 \newline {} \newline 0 & ~~ \text{ otherwise. } \end{cases} \end{equation}
## Climate Change Summary - Amman

Variable
Unit
JJAS
NDJFM
1981-2010
2011-2040
2041-2070
2071-2100
1981-2010
2011-2040
2041-2070
2071-2100
Temperature
${}^\circ\,\mathrm{C}$
$\mathbf{26.6}$
$\color{red}{\mathbf{1.3}}$
$\color{red}{\mathbf{2.9}}$
$\color{red}{\mathbf{4.8}}$
$\mathbf{12.5}$
$\color{red}{\mathbf{1.0}}$
$\color{red}{\mathbf{2.3}}$
$\color{red}{\mathbf{3.9}}$
Precipitation
$\mathrm{mm}/\mathrm{d}$
$\mathbf{0.01}$
$\color{blue}{ 0.025}$
$\color{blue}{ 0.039}$
$\color{blue}{ 0.032}$
$\mathbf{2.02}$
$\color{red}{-0.089}$
$\color{red}{-0.265}$
$\color{red}{\mathbf{-0.508}}$
Rainy Days
$\#$
$\mathbf{0.1}$
$\color{blue}{ 0.06}$
$\color{blue}{ 0.04}$
$\color{blue}{ 0.02}$
$\mathbf{33.7}$
$\color{red}{-0.43}$
$\color{red}{\mathbf{-0.98}}$
$\color{red}{\mathbf{-1.61}}$
R10mm
$\#$
$\mathbf{0.03}$
$\color{blue}{0.08}$
$\color{blue}{0.08}$
$\color{blue}{0.07}$
$\mathbf{10.3}$
$\color{red}{-0.6}$
$\color{red}{-1.6}$
$\color{red}{\mathbf{-2.9}}$
R20mm
$\#$
$\mathbf{0.03}$
$\color{blue}{ 0.013}$
$\color{blue}{ 0.017}$
$\color{blue}{ 0.015}$
$\mathbf{2.92}$
$\color{blue}{ 0.001}$
$\color{red}{-0.062}$
$\color{red}{-0.167}$
RX1day
$\mathrm{mm}/\mathrm{d}$
$\mathbf{1.4}$
$\color{blue}{1.7}$
$\color{blue}{2.3}$
$\color{blue}{1.8}$
$\mathbf{30.1}$
$ \color{blue}{\hphantom{-}1.2}$
$ \color{blue}{\hphantom{-}0.5}$
$\color{red}{-1.5}$
RX5day
$\mathrm{mm}/5\mathrm{d}$
$\mathbf{1.4}$
$\color{blue}{2.5}$
$\color{blue}{3.6}$
$\color{blue}{2.8}$
$\mathbf{63.8}$
$\color{blue}{\hphantom{-}0.4}$
$\color{red}{-3.2}$
$\color{red}{-8.8}$
# The End
# Backup Slides
#### Temperature Climatology

1971-2000 Observation: E-OBS v24.0e
#### Precipitation Climatology

1971-2000 Observation: E-OBS v24.0e
## Observation Data

## Observation vs. Reference dataset

**Tarim Basin**

## Multivariate bias adjustment - Physical/Statistical dependencies between variables ignored so far (only univariate distributions adjusted) - How can we adjust multivariate distributions: - Conditional quantile mapping for single bins (Piani and Haerter, 2012) - Random rotations of variable-vector combined with univariate quantile mapping (Cannon, 2017)

**Simulation**
**Observation**
## Variance Inflation - Bias adjustment $\neq$ downscaling (Maraun, 2013) - Bias adjustment can lead to **variance inflation** in case of large scale gaps - Former local extremes are transfered to every station within a grid cell
Maraun (2013)
## Further issues - Statistical adjustment **NO** physical reasoning - We assume that $g(x_\mathrm{sim})$ does **not change in time** - Seperate bias adjustement for different season, month or day of year might be necessary - Bias adjustment can change temporal structure of timeseries on different scales - Naive QM can distort climate trend - Bias adjustment using conditional resampling of huge ensemble (Sippel et al., 2017)

## How to choose a suitable bias adjustment? - Which biases and how large (data exploration)? - What is important in your impact assessment (goal exploration)?