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Mitigation Strategies and Costs of Climate Protection:  
The Effects of ETC in the Hybrid Model MIND

O������ ������������� ���� ����������� ����� �������������� ������������� ���� ����������� ����� ��������

MI�D ��� � �yb����� ����l �������p��������g ��v����l �����gy ���l���� �������� 
��� �� ����g����� g���w�� ����l �� ��� w���l� ������y. T���� ����l ����������� 
�ll�w� � b������ ��������������g �� ��� l���k�g�� b��w��� ��� �����gy �������� ��� ��� 
������-��������� ��v����������. W� p�������� � ���������v���y ���ly���� ��� p���������� 
�������� �� ���p���v� ��� ��������������g �� ��� ��������� ����������� ������ly���g 
�pp���������y ����� ��� ��� �p�����l ���x �� ������g������ �p������. P����������� 
���p����������g ������l�g����l ����g� ���� p��������� ��� �������� ������y ��v� � 
������g ���p��� �� b��� ��� �pp���������y ����� �� �l������ p����������� ��� �� ��� 
�p�����l ������g������ �������g���� �.g. p����������� ��� ��� ������-��������� ��v���������� 
��� ��� ��� �x���������� �������. S������-�p�������� �����gy ������l�gy p����������� ����g� 
��� p������l��� �� ������g������ �p������ b�� ��v� ��ly ������ ������� �� �pp���������y 
����� �.g. l��������g ����� �� ��� �����w�bl� �����gy ������l�g����. W� ����l��� ���� 
����b��k l��p� b��w��� ��� ������-������y ��� ��� �����gy �������� ���� ��������l 
���� ��� ���������������� �� �pp���������y ����� ��� ������g������ �������g����.

1. SETTINg THE SCENE

The Innovation Modeling Comparison Project (IMCP) explores the 
consequences of endogenous technological change (eTC) for the economics of 
stabilizing atmospheric carbon dioxide (CO

2
) concentration. This paper contributes 

to the IMCP by presenting an analysis of technological change, both at different 
levels and in different sectors of the Model of Investment and technological 
Development (MInD). MInD combines an intertemporal endogenous growth 
model of the macro-economy with sector-specific and technological details taken 
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from the field of energy system modeling. In particular, we explore the impact of 
endogenous technological change on opportunity costs and mitigation strategies 
within the framework of a social cost-effectiveness analysis.

We explore the impact of eTC in a social cost-effectiveness framework 
because we want to understand how technological change is induced by climate 
policy. Several studies have already incorporated aspects of eTC in this 
framework (Buonanno et al, 2003; Chakravorty et al, 1997; Goulder and Mathai, 
2002; Kypreos and Barreto, 2000; nordhaus and Boyer, 2000; nordhaus, 2002; 
Popp, 2004a; 2004b). The added value of MInD arises mainly from two features. 
First, we incorporate a wide spectrum of relevant mitigation options, including 
improvement of energy efficiency, carbon capture and sequestration (CCS), 
renewable energy technologies, and traditional non-fossil fuels (exogenous time 
series for large hydropower and nuclear). Second, technological change in MInD 
has an endogenous formulation with R&D investments in labor and energy 
productivity, learning-by-doing, and vintage capital in the different energy sectors. 
We believe that including these features of eTC is essential for the assessment of 
macro-economic mitigation costs and the portfolio of mitigation options. MInD 
is a hybrid model merging features from bottom-up and top-down models. It 
resembles a bottom-up model because it comprises several energy sectors. However, 
compared to energy system models, the technologies are represented at a more 
aggregated level. In MInD, these sectors are embedded within a macro-economic 
environment, in order to evaluate the feedbacks between the macro-economy and 
the energy sector (see Manne et. al. 1995 for an example of a similar exercise). 
We will show that these feedbacks are crucial for an understanding of opportunity 
costs and mitigation strategies in an economy faced with climate policy. 

The next section briefly introduces the model and its calibration, 
highlighting the improved treatment of CCS in MInD 1.1. Section 3 discusses 
technological change within MInD, forming the main part of this paper. Section 
4 draws conclusions.

2. THE MoDEl STruCTurE of MIND 1.1

The model equations of MInD are introduced and discussed in 
edenhofer, Bauer and Kriegler (2005). The model version 1.0 presented therein 
has been extended by Bauer (2005), to replace exogenous scenarios of Carbon 
Capture and Sequestration (CCS) with a technologically detailed, endogenous 
treatment of the CCS option (model version 1.1). This study uses MInD 1.1, 
adapted slightly to meet the requirements of the IMCP, and enhanced by a more 
sophisticated carbon cycle (Hoos et al. 2001). The following section provides a 
summary of the model structure and parameter calibrations. Model equations 
are restricted to the parameters treated in the sensitivity analysis and parameter 
studies in this article; for a comprehensive discussion of the model structure we 
refer to edenhofer et al. (2005) and Bauer (2005). 



MInD is an integrated assessment model comprising a model of the world 
economy drawing specific focus on the energy sector, and a climate module computing 
global mean temperature changes. MInD therefore allows us to assess the impacts of 
constraints to climatic change on the economy in cost-effectiveness analysis. 

MInD models economic dynamics by adopting an endogenous growth 
framework. It calculates time paths of investment and consumption decisions 
that are intertemporally optimal. The objective is to maximize social welfare, 
defined as the present value of utility (pure rate of time preferences is 1%), which 
is a function of per capita consumption exhibiting diminishing marginal utility. 
Most economic activity is subsumed in an aggregate CeS production function 
(equation 1), the output Y

A
 of which describes the gross world product (GWP).1
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The income share related parameters ξ

A
 are calibrated so that the actual income 

shares of labor �
A
, energy �, and capital �

A
 relate to each other at the ratio of 

66:4:30. Total factor productivity Φ
A
 is a fixed scalar calibrated to a value where 

the historical output of 2000 is reproduced. The elasticity parameter ρ
A
 determines 

the elasticity of substitution σ
A = (1+ρ

A
)-1. In some integrated assessment models, 

the elasticity of substitution between capital and energy is 0.4 for developed 
countries and 0.3 for developing countries (Manne et al, 1995). We have chosen 
an overall elasticity of substitution for all three factors of σ

A = 0.4. Labor �
A
 

is described by an exogenous population scenario adopted from the commoncommon 
POLeS/IMAGe baseline (CPI, Vuuren et al. 2003). Capital stock baseline (CPI, Vuuren et al. 2003). Capital stockVuuren et al. 2003). Capital stock. Capital stock �

A
 is built up 

through investments and depreciates at a rate of 5 %. The initial value of �
A
 is 

derived from Y
A
 and an estimated capital coefficient. Capital coefficients were 

computed from the OeCD database and from PWT6.1 for different countries. 
Their values agglomerate around 2.5. Since energy sector capital is separate from 
�

A
, we assume a lower capital coefficient of 2.0. Variables A and � denote the 

productivities of labor and energy, respectively, and are stock variables determined 
by R&D investments according to equation (2):
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 and RD

�
 are investment flows controlled by the central planner. The 

parameters g
A
 and g

�
 (where 0<g

A 
<1. 0<g

�
 <1) model the decreasing marginal 

productivity of R&D investments. They are assumed to take the values of 0.05 

1. MInD is implemented in discrete time steps of 5 years. In the model equations of this text we 
present the more intuitive continuous formulations, e.g. in case of derivatives.
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and 0.1, respectively. Parameters a
A
 and a

�
 determine the productivity of R&D 

investments. They are calibrated at a rate such that spending 1 % of the GWP on 
energy R&D increases the energy efficiency parameter by 2.25 %; when 2.5 % of 
GWP is spent on labor R&D, the labor efficiency parameter increases by 2 %.

The energy input to aggregate production, �, is an additive composite of 
fossil energy, renewable energy, and traditional non-fossil energy, with the latter 
given exogenously. Fossil energy is produced from energy conversion capital and 
primary energy input in a CeS production function. Fossil resources are converted 
to primary energy using an exogenous assumption about the carbon/energy ratio 
of the fossil fuel mix, its availability being described by a model of resource 
extraction. Resource R is extracted by capital �����, the average productivity of 
which is subject to a scarcity effect (κ�������) and a learning-by-doing effect (κ������l):

 
R = κ���� ����� (4)  

 
κ���� = κ������� κ������l (5)
  

The initial resource extraction is R = 6.4 GtC (SReS), assumed to be produced 
by a capital stock of ����� = 5 trillion $US. This determines κ������l because κ������� is 
normalized to unity.

The scarcity effect κ������� is determined by the marginal costs of resource 
extraction C

����
����:

 χ
1κ������� =  ——— (6)

 C
����
����

  
In equation 6, parameter χ

1
 as well as the marginal costs in 2000 are set to $113. 

During the simulation, marginal costs C
����
���� increase with cumulative resource 

extraction CR���� according to equations 7 and 8. 
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Parameter χ
1
 denotes initial costs of the fossil resource, the exponent χ

4
 captures 

the curvature of the function (i.e. the timing of increasing costs), and χ
2
 gives 

the marginal costs once the amount described by χ
3
 has been extracted. We 

parameterize this function according to Rogner’s (1997) empirical assessment 
of world hydrocarbon resources, and arrive at the values χ

2
 = 700, χ

3
 = 3500 

and χ
4
 = 2. 



The learning-by-doing effect of capital productivity κ������l depends on the 
ratio of actual resource extraction �������l to initial resource extraction �0

������l. 
 
 κ������l �������l
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The factor b������l = 0.4 dampens the learning-by-doing effect: a rapid increase in 
extraction induces a loss in productivity gains relative to the same increase in 
extraction spread over a longer time period. Furthermore, productivity gains from 
learning saturate when productivity approaches its maximum value κ

������l
��x which is 

set to twice its initial value. Parameter τ������l determines the speed of learning and 
is set to 100 years.

Renewable energy ����� is produced by capital ��p���� which is employed 
at F�H���� = 2190 full load hours per year.

����� (�) = F�H���� � ��p���� (�) (10)
 
��p���� (�) =   

�

∫
�0    

ω (� – �') κ���� (�') I���� (�')��' (11) 
 

The available renewable energy capital stock in each point in time is determined 
by summing over the investments into renewable energy I���� in preceding time 
steps multiplied with the productivity of installed capital κ����. Depreciation is 
modeled by weights ω which determine the fraction of capital that still remains. 
ω

1
 to ω

7
 are set to 1.0, 0.9, 0.8, 0.7, 0.5, 0.15, 0.05, and ω

��
 = 0 if �� > 7. This allows 

to model different capital productivities for different vintages of the capital stock. 
Capital productivity κ���� indeed changes in time because the costs of renewable 
energy equipment ����� decrease, subject to learning-by-doing.

 
 1
κ����  = ——————— (12)
 ����� (�) + ��l���� 
 

The inverse of floor costs ��l���� = 500 US$/kW constrains capital productivity from 
above, while ����� starts out at ����� = 700 US$/kW and decreases with cumulative 
installed capital C��p����:

C��p���� =    
�

∫ 
τ0    

��p���� (�')��' (13) 
 

The following equation describes the dynamics of learning-by-doing in the 
renewable sector: 

��������  –  ��������– 1 =  �������0 C��p–µ��

���
��

���0
  (C��p–µ��

���
��

����  –  C��p–µ��

���
��

����–1)
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 C��p������� – 1
 × 1—————— 2

b����

 (14)
 C��p������� 
w���� ����� (� = 0) =  �0

������
 

The learning parameter µ���� determines the learning rate l�� and reflects a learning 
rate of 15 %, i.e. investment costs decrease by 15 % with every doubling of 
cumulative installed capacity. Parameter b���� within the last factor of the right 
hand side of the equation causes a dampening similar to b������l in the learning-by-
doing equation of the fossil resource extraction (equation 9). Set to b���� = 0.4, it 
prevents learning that is too fast. 

There are three sources of carbon dioxide emissions: fossil fuel combustion, 
leakage from sequestered CO

2
, and emissions from land-use and land-use change. 

The latter are described by an exogenous time series. Since fossil resources are 
measured in tons of carbon, resource use R and emissions �� coincide, except for 
land-use emissions and Carbon Capturing and Sequestration (CCS):

��(�) = R(�) + �U�UC(�) – R
��p

(�) + ��A�(�), (15) 
 

where R
��p

 denotes the amount of CO
2
 captured in a given year and ��A� denotes 

leakage.
CCS is modeled as a chain process distinguishing six steps: CO

2
 

is captured at point sources (1) and transported via pipelines to sequestration 
sites (2). There, the CO

2
 needs to be compressed (3) before it is injected into 

the sequestration site (4). Then, it either remains in the site (5) or leaks into the 
atmosphere (6). Processes 1-4 are capital intensive and are modeled as capital 
stocks representing available capacities for the individual processes. Capacities 
are built up by investments according to the following equation:

�pq (�) =   
�

∫
�0    

ωq (� – �') ι –1
pq (�') Ipq (�')��' (16)

  
Variables �pq denote the capacities, index p denotes the process step, and the 
index q denotes different investment alternatives such as one of five distinct 
capture technologies or one of six distinct sequestration alternatives. Weighting 
parameters ω introduce a depreciation scheme for different vintages of the 
capital stocks, similar to equation (11) in case of renewable energy. Investments 
are denoted Ipq and the investment costs are ιpq. Investment costs for capturing 
capacity range from ~100 $US/tC to ~450 $US/tC depending on the specific 
capture technology. When the productivity of CCS investments is varied in 
parameter studies later on in this paper, the same relative change is applied to the 
investment costs for each technology.

In addition to the limitation inflicted by the necessity to build up 
capacity, the amount of carbon that may be captured is limited by a static and 
a dynamic constraint. The static constraint limits the amount of carbon which 
can be captured from a large power plant as a fraction of the resource use in 



the business-as-usual scenario. The dynamic constraint defines an upper limit 
of investments into the specific capture technologies in each period. The upper 
limit is defined as a share of the investments in the power generation sector. The 
rationale is that the capability of retrofit investments in large power plants depends 
on the total amount of investments undertaken in the power generation sector.

The injection of CO
2
 into particular sequestration sites demands two 

types of facilities: compressors and injection wells (steps 3 and 4). The modeling 
approach takes into account that both facilities demand investments and secondary 
energy. In steps 5 and 6, the modeling approach considers the capacity constraint 
of each sequestration alternative j and leakage of sequestered carbon: Leakage is 
described by a rate, and the capacity of each sequestration alternative is the upper 
bound for the cumulative amount of CO

2
 that is injected into each sequestration 

alternative. 

3. THE rolE of ENDogENouS TECHNologICal CHaNgE IN  MIND

In what ways does endogenous technological change matter in policy 
scenarios computed with MInD? In the following sections, we explore this 
question using sensitivity analysis and miscellaneous parameter studies (see Bauer 
et al, 2005 for initial parameter studies with MInD). In the sensitivity analysis, we 
rank important technology-related model parameters according to their influence 
on two model outputs: the opportunity costs of climate protection and the mix of 
options used for CO

2
 mitigation. We then study the effect of parameter variations 

on the same model outputs and analyze the underlying economic dynamics. All 
model runs stabilize atmospheric CO

2
 concentration level at 450 ppm.

3.1 local Sensitivity analysis

Figure 1a and 1b show the influence of important parameters of 
MInD on opportunity costs of climate policy (1a) and on the mix of mitigation 
options (1b). The former are measured as losses of gross world product (GWP), 
accumulated from 2000 to 2100 and discounted to present value at a rate of 5 %, 
relative to the business-as-usual scenario. The latter is represented by the ratio of 
the two dominant options, renewable energies and CCS, where a ratio of unity 
implies that the same amount of CO

2
 reductions may be attributed to each of 

the mitigation options. Parameter influence is measured by the response of the 
model to a 5 % variation of the parameter. Taking the set of parameters from the 
model calibration as the starting point, we vary one parameter at a time, hence the 
effects reflect local sensitivity. As local sensitivity analysis assesses parameter 
sensitivity at only one point in parameter space it neglects the fact that sensitivities 
may vary tremendously at other points in parameter space. Using a measure of 
global sensitivity, i.e. a measure that takes into account simultaneous variation of 
several parameters, is preferable as it provides a remedy to this shortcoming. 
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However, local sensitivity analysis is used in this paper for the following 
two reasons. Firstly, the model response to a change in a single parameter, ��������� 
p�����b�� , is an intuitive measure. Secondly, the computational burden for a 
local analysis is much lower. To emphasise, while this analysis sheds light on 

figure 1. Sensitivity analysis

1a.

1b.

Figures 1a and 1b show the influence of important technological parameters on opportunity costs and 
mix of mitigation options, respectively. Metric is the deviation of the output in response to an up to 
5% increase (decrease) of the parameter. The parameter “e.o.s. production” refers to the elasticity of 
substitution σ

A
 in aggregate industrial production, i.e. production of the gross world product.



the influence of parameters and the potential influence of their uncertainties on 
model results, we do not explicitly test parameter uncertainties. Therefore, we 
make no statements about the relative importance of parameters in contributing 
to the uncertainty of computed results, but rather, about the ir potential to impact 
results themselves.

As Figure 1a indicates, the greatest influence on opportunity costs is 
exerted by the elasticity of substitution σ

A
, followed by the parameters describing 

the availability of fossil resources, and the effectiveness of R&D investments in 
labor productivity. The latter and the top three parameters have a positive effect 
on costs, i.e. costs increase with the parameters, whereas the assumption of high 
marginal future fossil resources costs have a negative effect. Productivity of energy 
efficiency R&D and the learning rate of the renewable energy technologies rank 
next, followed by two more sector specific parameters, the learning parameter in 
fossil resource extraction and the efficiency of investments in CCS. Overall, the 
relatively small responses of the model to parameter variations (less than 5%) 
improves the confidence in the robustness of the computed opportunity costs. 
In the next two sections we will explore the reasons for this observation, and 
evaluate the role of technological change in deriving these results.

Figure 1b depicts the influence of parameters on the mix of mitigation 
options. It is immediately evident from a comparison between Figure 1a and Figure 
1b that the ranking of parameters has changed. Most notably, the elasticity of 
substitution has dropped to the bottom rank, and two resource related parameters, 
χ

2
 and χ

3
, also emerge to fall in ranking. Conversely, the parameterization of 

labor R&D, the learning rate of renewable technologies, and the efficiency of 
CCS investments have risen in the hierarchy. Overall, the mitigation mix is 
more sensitive (with variations up to 10 %) than the mitigation costs in Figure 
1a. This result comes as no surprise. Since GWP losses are closely related to 
social welfare, the maximization of which is the objective of MInD, GWP loss 
is deliberately kept to a minimum. The mix of mitigation options, on the other 
hand, is endogenously determined to minimize costs. It is intuitive that a change 
in the parameter values alters the competitiveness of mitigation options, hence its 
impact on the mitigation mix is significant.

3.2  Determinants of the opportunity Costs

This section takes a closer look at the opportunity costs of climate 
protection. We present parameter studies varying two parameters simultaneously. 
This enables us to discuss the effects of varying these parameters, as well as 
analyzing the interdependencies between them, hence taking a first step beyond 
a local sensitivity analysis presented in Section 3.1. To an extent, this analysis 
remains very much local in character since many parameters remain fixed at 
their default levels. However, restricting the variation to two parameters at a time 
enables an intuitive graphical presentation of the results, which provides deeper 
and useful insights into the workings of MInD.
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We start out by taking a look at the engine of endogenous growth in 
MInD: R&D investments that drive labor and energy efficiencies. Figure 2a 
displays the productivity of these investments. While the two parameters are similar 
with respect to the process they describe – accumulation of a knowledge stock 
increasing the productivity of an input factor to aggregate production – their effects 
on opportunity costs are contrary. An enhanced effectiveness of labor productivity 
R&D raises costs, while better energy efficiency R&D reduces GWP losses. This is 
due to opposite effects on the mitigation gap, i.e. the discrepancy of CO

2
 emissions 

between business-as-usual and climate policy scenarios. More effective labor R&D 
stimulates additional economic growth and implies higher CO

2
 emissions in the 

baseline. More effective energy R&D investments, on the other hand, facilitate 
much better energy efficiency in the baseline, and hence lowers CO

2
 emissions. 

figure 2. Parameter Studies of Mitigation Costs

Figures in this panel show discounted gross world product loss (discount rate is 5 %) for several 
parameter studies. In figure 2a, energy R&D and labor R&D refer to the productivity of investment 
into research that enhances the efficiency of the corresponding factor. In 2b, e.o.s. production refers to 
the elasticity of substitution in the aggregate industrial production sector. Parameters χ

3
 and χ

4
 in figure 

2b and 2c refer to the size of the fossil resource base and the exponent of the Rogner curve, respectively. 
Figure 3d treats the learning rate of renewable technologies and the efficiency of investments in CCS 
technology. The pairs of default parameter values are indicated with a bold cross.



The mitigation gap characterizes the challenge for the economy facing climate 
protection goals and manifests itself in the opportunity costs.

Figure 2b compiles two parameters with an effect of the second type: 
the elasticity of substitution in the aggregate production sector, and the estimated 
size of the available fossil resources. Figure 2b shows that costs increase with the 
elasticity of substitution. This too can be attributed to baseline effects: higher 
elasticity of substitution implies a more flexible production technology which 
induces higher economic growth in the business-as-usual scenario. Therefore, 
achieving 450 ppm requires a substantial departure from the baseline and is 
relatively costly. A variation of the resource base has a bigger impact on the 
mitigation costs if the elasticity of substitution is relatively high. Low values of the 
elasticity of substitution hinder economic growth and consequently imply a lower 
demand for energy. At low energy demand, relaxing the scarcity of the resource 
has a smaller effect. In general, a larger resource base allows higher economic 
growth in the business-as-usual case. When climate policy constrains resource 
use, it devaluates exhaustible resource as an economic asset and diminishes the 
rent income of their owners. The loss of rent income increases with the resource 
base because a relatively cheap and abundant resource can no longer be used as 
input in production.

We take yet a closer look at the fossil resource base. Figure 2c studies 
the variation of the size of the resource base χ

3
 and parameter χ

4
. Parameter χ

4 

as well as the resource base are proxy variables for the technological progress 
in the extraction sector. Increasing χ

3
, i.e. assuming more abundant resources, 

results in cheaper short to medium term supply of the fossil resource. Increasing 
χ

4
 trades a slow and steady increase of the marginal costs for a steeper increase 

at a later time – thus making the resource cheaper and more easily available in 
the short to medium term. High values of χ

4
 allow higher economic growth in 

the business-as-usual case and induce a relatively large mitigation gap. For high 
values of χ

4
 the marginal costs of extraction are essentially constant. Under this 

condition, an increased resource base has moderate impact on macro-economic 
mitigation costs. For low values of χ

4
, an increased resource base has a slightly 

higher impact on the macro-economic costs because marginal improvements 
in extraction already increase the shadow price of the resource. This parameter 
study shows that climate protection becomes relatively costly if there is a high 
rate of technological progress in the exploration and extraction of fossil fuels. 
Accelerated technological progress in the extraction sector makes climate policy 
more costly, because such policy devaluates assets (resources and capital stock 
in the corresponding sectors). Therefore, special attention ought to be paid to 
assumptions about resource availability and their uncertainties.

Contrary effects can be observed if technological progress decreases the 
costs of mitigation technologies. The impact on opportunity costs is shown in 
Figure 2d. We explore two parameters which are both closely related to mitigation 
options: the efficiency of investments into Carbon Capture and Sequestration 
technologies (CCS) and the learning rate of renewable energy technologies. 
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Varying these two parameters shifts the competitive advantage between the two 
mitigation options and, consequently, the extent to which they are used. It turns 
out that the efficiency of CCS investments has no strong impact on the overall 
opportunity costs if the learning rate of renewable energy technologies is relatively 
high. The reason is that renewables are modeled as a backstop technology, i.e. 
as a carbon-free energy source, and need no non-reproducible input for energy 
production. In contrast to the renewables, CCS investments only bridge from the 
fossil fuel age to a carbon-free era. CCS makes the transition of the energy system 
smoother but has severe limitations if fossil fuels become more costly because of 
increasing marginal extraction costs at the end of the 21st century. At the same time, 
renewable energy becomes cheaper because of learning-by-doing. It is plausible 
that this effect cannot be altered by high efficiencies of CCS investments. At low 
learning rates of the backstop technology, CCS becomes more important.  

3.3  Mitigation Strategies

In this section we analyze the impact of the same parameters explored 
in the previous section on the option portfolio of an optimal mitigation strategy. 
Mitigation options are compared on the basis of the amount of CO

2
 that they 

enable the economy to reduce. For the CCS option, this is straightforward: it is 
simply the amount of captured and sequestered CO

2
 (less the amount that leaks 

from the sequestration site). In case of energy related mitigation options, i.e. 
renewable energy and energy efficiency improvements, the corresponding amount 
of “mitigated CO

2
 emissions” was derived from the equivalent amount of energy 

from fossil fuels. In , the degree of efficiency on converting primary into final 
energy is determined endogenously in the production function of the fossil sector. 
In this ex post analysis, however, we estimate the “equivalent” amount of fossil 
energy by assuming a fix coefficient. The remaining mitigation options, namely 
energy savings by substitution of energy at the levels of energy transformation 
and aggregate production, are visualized as the difference to the total reduction 
of CO

2
.

Figure 3a shows that the amount of CCS within the portfolio of 
mitigation options increases with the assumed resource base. The cumulative 
amount of CO

2
 reduced by renewables within the next century decreases, energy 

efficiency remains constant and energy savings increase. An increasing resource 
base implies increasing rents for the owners. This increasing rent income makes 
CCS a more profitable option. Due to high economic growth and relatively cheap 
fossil fuels, the return on investment in renewables falls short of the returns on 
CCS investments.

In figure 3b, energy savings (reduction of energy consumption by 
substituting energy by capital in different sectors) become more profitable if the 
elasticity of substitution increases; at the same time, the importance of energy 
efficiency decreases. 
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figure 3. Parameter Studies of Mix of Mitigation options

Figures 3a-f show how the mix of mitigation options varies in parameter studies. CO
2
 reductions 

caused by avoiding the use of fossil fuels (renewable energy, energy efficiency improvements, and 
substitution) are estimated from the alternative use of fossil fuels. Dashed lines indicate the default 
parameter value.



102  /  T�� �����gy J������l

A more surprising result is obtained in figure 3c and 3d. In figure 3c 
an increasing productivity of R&D investment in labor enhancing activities also 
increases the share of renewables in the mitigation portfolio. The explanation 
is as follows: economic growth induces additional energy demand that is met 
by carbon-free technologies. Due to high economic growth, marginal extraction 
costs of fossil fuels increase sooner, and thus CCS is less competitive compared 
to renewables. In contrast, when R&D investments in energy efficiency become 
more productive, the mitigation gap shrinks, and the share of renewables within 
the mitigation portfolio decreases (3d). Interestingly, changes in the productivity 
of energy R&D investments affect the baseline rather than providing a more 
attractive mitigation option. In this study, the energy efficiency parameter varies 
from 63 to 245 % of its regular value in 2100 in the baseline, the latter implying 
that energy use in 2100 is decreased by 60%. Climate policy, however, only 
induces 0.4 to 2.7 % additional increases of the efficiency parameter. To sum, 
higher energy efficiency and a lower baseline for economic growth reduce the 
demand for renewables. The importance of the renewable energy option depends 
heavily on the underlying economic growth path. 

As figure 3e shows, high learning rates in the renewable energy sector 
reduce the optimal amount of CCS substantially. In that sense CCS can be seen 
as a joker-option if the learning rate of the renewables is relatively low. It is 
also remarkable that energy savings are less important when the learning rate 
is relatively high because the energy demand can be met by the carbon-free 
renewables. Learning-by-doing reduces the price of electricity produced by 
renewables and increases the demand for renewables which reduces their costs 
further. This feedback loop makes CCS less important. As figure 3f indicates, 
this effect can be counteracted by an increasing efficiency of CCS-investments. 

4. CoNCluDINg rEMarkS

In what ways does technological change matter? Our analysis shows 
that technological change works in two “directions”: we identify technological 
progress that permeates the entire economy and technological progress that 
is restricted in its effects to a single sector. examples for such sector-specific 
technological change are learning-by-doing effects associated with renewable 
energy technologies and resource extraction, as well as technological progress in 
CCS, here modeled via its investment efficiency. In , parameters associated with 
such sector specific technological change have a significant impact2 on the optimal 
mix of mitigation options. For example, an increased learning rate increases the 
share of renewables, and improved investment efficiency in CCS increases the 
share of CCS within the entire portfolio of mitigation options (Figures 1b and 

2. We refer to the impact of a parameter in terms of a relatively large potential influence, i.e. a large 
sensitivity of results to changes of this parameter. Recall, however, that the actual uncertainty about 
parameters is not taken into account. 



3ef). However, these parameters are less important in determining the overall 
opportunity costs of climate protection which measure the impact on the overall 
economy (Figure 1a).

In contrast, there is technological change with significant impact on the 
macro-economic growth process, evident in its influence on opportunity costs. 
Such technological change is described by parameters of the macro-economic 
environment, like the elasticity of substitution, and the parameters characterizing 
the effectiveness of labor- and energy R&D investments. Labor R&D investments 
in particular have a strong influence on macro-economic growth as well as the 
mix of mitigation options. Progress in resource extraction is an example of sector-
specific technological change with a macro-economic impact. This progress is 
characterized by the parameters of Rogner’s scarcity curve and has been shown 
to exert a significant influence on opportunity costs. The most prominent effect 
of these parameters is their impact on the baseline.

We conclude that feedbacks between the macro-economy and the energy 
system are crucial for determining mitigation costs and the development of the 
mitigation portfolio in time. The case of technological change in resource extraction 
shows how sector-specific processes may exert significant influence on the macro-
economy, while the impact of labor R&D productivity on the share of renewable 
energy is an example of macro-economic influence on a distinct sector. 

This has strong implication for policy. A sector-specific policy that 
fosters technological change in the extraction sector induced by increasing 
prices in the oil or gas market would increase the opportunity costs of climate 
protection. A policy that increases the economy-wide energy efficiency in all 
energy related sectors would reduce the costs of climate protection substantially. 
enhancing technological change in the extraction sector makes sense, if decision 
makers intended only to increase energy security. Analysis here highlights that 
the impact of such a policy on the opportunity costs of climate protection must 
also be taken into account. 

The results presented here indicate that partial-equilibrium models 
omitting intertemporal and inter-sectoral aspects can be misleading for designing 
a climate and energy policy. Thus, they stress the utility of hybrid models 
incorporating endogenous technological change at the sector level as well as at 
the macro-economic level. Moreover, hybrid models pose a coherent framework 
not only for the assessment of the opportunity costs and portfolios of mitigation 
strategies, but also for the design of climate and energy policy instruments. 
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