

Climate Change & Central Asia

Bijan Fallah et. al.

Climate Change & Central Asia

Bijan Fallah et. al.

UNIVERSITÄT HALLE-WITTENBERG

Climate Change & Central Asia

Bijan Fallah et. al.

MARTIN-LUTHER UNIVERSITÄT HALLE-WITTENBERG

GLOBAL TEMPERATURE SINCE THE LAST ICE AGE

GLOBAL TEMPERATURE SINCE THE LAST ICE AGE

Projections - Temperature change

Long Term (2081-2100) SSPs (rel. 1850-1900) - Annual (33 models) climate change.

Projections - Total Precipitation change

Long Term (2081-2100) SSPs (rel. 1850-1900) - Annual (33 models) climate change.

Projections – Snow Fall change

Long Term (2081-2100) SSPs (rel. 1850-1900) - Annual (33 models) climate change.

Koepen Climate Classification

"Upstream" and "Downstream" countries

Renewable internal freshwater resources per capita (m³) by country

Annual freshwater withdrawals, total (% of internal resources)

"Upstream" and "Downstream" countries

1800%

Annual freshwater withdrawals, total (% of internal resources)

"Upstream" and "Downstream" countries

Water withdrawal for Agriculture UZBEKISTAN

Share of hydropower in total electricity production,%

KYRGISTAN 85%

The result of intensive Irrigation

6%

the water volume compared to mid-XX

Emergency Response Coordination Centre (ERCC) - DG ECHO Daily Map | 09/04/2024

Russia, Kazakhstan | Floods

15

Russian Heatwave 2010

Challenges in studying the Climate change in CA

• Climate impact assessment needs local climate information

(e) precipitation climatology for the ISIMIP-BASD GFDL-ESM4_rlilp1fl model

Challenges

- Climate impact assessment needs local climate information
- Central Asia has a sparse climate observation network

Challenges

• Climate impact assessment needs local climate information

5000 4000 3000

-2000 -3000 -4000 -5000 -6000 -7000 -8000 -9000

- Central Asia has a sparse climate observation network
- The topography of CA is very complex

Challenges

- Climate impact assessment needs local climate information
- Central Asia has a sparse climate observation network
- The topography of CA is very complex
- Number of regional climate impact studies available in CA (only 0.24% of studies address climate change)

CORDEX CMIP6 downscaling plans

- Central Asia **8** simulations done by PIK
- Europe **193** sim
- 193 simulations

Warming trend in CA

Since 1850 https://berkeleyearth.org/global-temperature-report-for-2022/

Warming trend in CA

 Annual Average Temperature Rankings in 2023

 Image: constraint of the state of the s

Since 1850 https://berkeleyearth.org/global-temperature-report-for-2022/

Challenges – Downscaling with regional models

What we have

What we need

Challenges – Downscaling with statistical models

What we have

What we need

Ensemble mean (5 ISIMIP3b models) of tas ssp585 2070-2100

Artificial Intelligence : Deep Neural Nets

@Paula Harder

What do model tell us then?

Heat Wave Duration index with human influence

JU

HWDI Difference obsclim minus counterclim

- 200

- 150

100

50 0

-50

-100

-150

-200

- 200

- 150

100

50

0

-50

-100

-200

HWDI Difference obsclim minus counterclim

Heavy Precipitation with human influence

Future of water resources based on our activity

Fig. 14: Maps of two Köppen climate categories, i.e. ET and EF for a) historical period and at the end of the century (2071-2100) from 5 model simulations and under ssp585 scenario (b-f) in the two main rivers basins of Central Asia (Amu Darya and Syr Darya).

Future of water resources based on our activity

Where would we go?

Asia

Capacity Building

Capacity building events

Central Asia

Capacity building events - highlights

Geographical representation of participants BeFind trip to Bald Security Conference 2022

Capacity building events - highlights

Keynote by Dr Iulii Didovets at COP28

Berlin Peace Dialogue

ClimateImpactsOnline Central Asia

Covers five countries:

Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan and Turkmenistan

Two main sectors: Climate and Agriculture

+ and Energy will be added soon

Three level of disaggregation

Central Asia

Data download

It's possible to download for each region and time period data in form of:

- Vector figures •
- Tables \bullet
- Netcdf files \bullet

× Close	1981 – 2010				• Central Asia		.↓
Temperature > Mean air temperature					De	cadal	Table
Parameter Mean Near-Surface Air T (Total Maximum Air T in ye Total Minimum Air T in ye Maximum Daily Near-Surf Precipitation [mm/year] Number of hot days [d] Number of wet days [days	°C] ar/season [°C] ar/season [°C] ace Air T Range [°C]		Year 8.4 37.5 -25.3 21.4 268.0 56.5 58.0	Winter -7.2 8.4 -25.2 18.2 70.5 - -	Spring 8.4 30.9 -15.3 19.5 80.4 - -	Summer 22.8 37.4 7.2 19.5 54.2 - -	Fall 8.6 31.4 -13.3 19.9 53.0 - -
X Cone Whole year Temperature #Racious alt temperature	♥ _{Uzbečistan} Decadat ta	de A					
Truphometers	A REAL PROPERTY AND INC.						

Green Central Asia: Transboundary dialogue on climate, environment and security in Central Asia

Partners

Potsdam Institute for Climate Impact Research

Implemented by:

Thank you

TEAM:

Iulii Didovets Stefanie Wesch Bijan Fallah Qaisar Saddique Paula Romanovska David Hansmann Lara Quaas Diegopablo Schwarz Bernhard Schauberger Fred Hattermann

Figure 5. Changes in number of days with precipitation more than 20mm in the period with respect to 1985-2014 references for a,b) SSP126, d,e) SSP370 and g,h) SSP585 at the end of the century (2070-2099) from CCLM and CMIP6 GCMs' ensemble mean. The ensemble's standard deviations are shown in c,f and i.

Figure 8. a) MAE of GCM (EC-Earth3-Veg) vs CCLM run. GCM is remapped bilinearly to the 0.25×0.25 grid. b) Added value (AV) or MAE reduction (MAE(EC-Earth3-Veg,CCLM) - MAE(CNN,CCLM) for unconstrained method. c) and d) boxplots of averaged daily precipitation over the CA domain and the black box shown in a and b over North of Iran. Numbers in the parenthesis indicate the correlation coefficients of each model with respect to CCLM.

Thanks

Dynamical Downscaling

- CCLM run over CA driven by historical (1985-2014) MPI-ESM-HR
- CCLM run over CA driven by ssp585
- CCLM run over CA driven by reanalysis (2000-2010) ERA5
- CCLM run over CA driven by ssp370 (2019-2099) MPI-ESM-HR
- CCLM run over CA driven by ssp126
- CCLM run over CA driven by reanalysis (1979-2019) EARInterim
- CCLM run over CA driven by ssp370
- CCLM run over CA with historical
- (2019-2099) MPI-ESM-HR
 (1979-2019) EARInterim
 (2019-2033) EC-Earth3-Veg
 (1984-1993) EC-Earth3-Veg

(2019-2099) MPI-ESM-HR