Supplementary Information: Unprecedented threats to cities from multi-century sea level rise

Benjamin H. Strauss1,*, Scott A. Kulp1, DJ Rasmussen2, and Anders Levermann3,4,5

1Climate Central, Princeton, New Jersey 08542, USA
2Princeton University, Princeton, NJ, USA
3Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
4Lamont-Doherty Earth Observatory, Columbia University, New York, New York 10964, USA.
5Institute of Physics, Potsdam University, 14476 Potsdam, Germany

*Correspondence to: bstrauss@climatecentral.org

September 20, 2021
<table>
<thead>
<tr>
<th>Location</th>
<th>Time Frame</th>
<th>Present Emissions</th>
<th>1.5C</th>
<th>2C</th>
<th>3C</th>
<th>4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global (mean)</td>
<td>Multi-Century</td>
<td>1.9 (0.00-3.8)</td>
<td>2.9 (1.6-4.2)</td>
<td>4.7 (3.0-6.3)</td>
<td>6.4 (4.7-8.2)</td>
<td>8.9 (6.9-10.8)</td>
</tr>
<tr>
<td>Global (mean)</td>
<td>2100</td>
<td>N/A</td>
<td>0.48 (0.35-0.64)</td>
<td>0.56 (0.39-0.76)</td>
<td>0.62 (0.47-0.80)</td>
<td>0.73 (0.58-0.93)</td>
</tr>
<tr>
<td>Shanghai, China</td>
<td>Multi-Century</td>
<td>2.0 (0.48-3.6)</td>
<td>3.1 (1.2-5.0)</td>
<td>5.1 (2.7-7.4)</td>
<td>6.9 (4.3-9.5)</td>
<td>9.6 (6.7-12)</td>
</tr>
<tr>
<td>Shanghai, China</td>
<td>2100</td>
<td>N/A</td>
<td>0.62 (0.35-0.93)</td>
<td>0.71 (0.40-1.1)</td>
<td>0.80 (0.45-1.2)</td>
<td>0.91 (0.57-1.3)</td>
</tr>
<tr>
<td>Mumbai, India</td>
<td>Multi-Century</td>
<td>2.0 (0.46-3.5)</td>
<td>3.0 (1.4-4.8)</td>
<td>4.9 (2.6-7.2)</td>
<td>6.7 (4.1-9.2)</td>
<td>9.2 (6.4-12)</td>
</tr>
<tr>
<td>Mumbai, India</td>
<td>2100</td>
<td>N/A</td>
<td>0.41 (0.22-0.65)</td>
<td>0.49 (0.26-0.75)</td>
<td>0.58 (0.31-0.88)</td>
<td>0.71 (0.45-1.00)</td>
</tr>
<tr>
<td>Dhaka, Bangladesh</td>
<td>Multi-Century</td>
<td>1.9 (0.45-3.4)</td>
<td>2.9 (1.2-4.7)</td>
<td>4.8 (2.6-7.0)</td>
<td>6.5 (4.1-9.0)</td>
<td>9.0 (6.3-12)</td>
</tr>
<tr>
<td>Dhaka, Bangladesh</td>
<td>2100</td>
<td>N/A</td>
<td>1.8 (1.6-2.0)</td>
<td>1.9 (1.6-2.1)</td>
<td>1.9 (1.7-2.2)</td>
<td>2.1 (1.8-2.4)</td>
</tr>
<tr>
<td>Hanoi, Vietnam</td>
<td>Multi-Century</td>
<td>2.0 (0.46-3.4)</td>
<td>3.0 (1.2-4.8)</td>
<td>4.9 (2.6-7.1)</td>
<td>6.6 (4.1-9.1)</td>
<td>9.1 (6.4-12)</td>
</tr>
<tr>
<td>Hanoi, Vietnam</td>
<td>2100</td>
<td>N/A</td>
<td>0.47 (0.12-0.86)</td>
<td>0.53 (0.17-0.94)</td>
<td>0.63 (0.24-1.1)</td>
<td>0.73 (0.34-1.2)</td>
</tr>
<tr>
<td>Tokyo, Japan</td>
<td>Multi-Century</td>
<td>2.1 (0.49-3.7)</td>
<td>3.2 (1.3-5.1)</td>
<td>5.2 (2.8-7.6)</td>
<td>7.1 (4.4-9.7)</td>
<td>9.8 (6.9-13)</td>
</tr>
<tr>
<td>Tokyo, Japan</td>
<td>2100</td>
<td>N/A</td>
<td>0.48 (0.28-0.71)</td>
<td>0.57 (0.34-0.83)</td>
<td>0.64 (0.36-0.96)</td>
<td>0.79 (0.52-1.1)</td>
</tr>
<tr>
<td>Lima, Peru</td>
<td>Multi-Century</td>
<td>2.0 (0.47-3.5)</td>
<td>3.0 (1.2-4.9)</td>
<td>5.0 (2.7-7.3)</td>
<td>6.8 (4.2-9.3)</td>
<td>9.4 (6.6-12)</td>
</tr>
<tr>
<td>Lima, Peru</td>
<td>2100</td>
<td>N/A</td>
<td>0.34 (0.16-0.55)</td>
<td>0.40 (0.19-0.65)</td>
<td>0.49 (0.26-0.74)</td>
<td>0.59 (0.37-0.86)</td>
</tr>
<tr>
<td>Rio de Janeiro, Brazil</td>
<td>Multi-Century</td>
<td>2.0 (0.47-3.4)</td>
<td>3.0 (1.2-4.8)</td>
<td>4.9 (2.6-7.1)</td>
<td>6.7 (4.2-9.2)</td>
<td>9.3 (6.6-12)</td>
</tr>
<tr>
<td>Panama City, Panama</td>
<td>Multi-Century</td>
<td>2.0 (0.47-3.6)</td>
<td>3.1 (1.2-5.0)</td>
<td>5.1 (2.7-7.4)</td>
<td>6.8 (4.2-9.4)</td>
<td>9.3 (6.5-12)</td>
</tr>
<tr>
<td>New York City, USA</td>
<td>Multi-Century</td>
<td>1.9 (0.39-3.4)</td>
<td>2.9 (1.1-4.7)</td>
<td>4.6 (2.4-6.9)</td>
<td>6.0 (3.5-8.5)</td>
<td>7.9 (5.1-11)</td>
</tr>
<tr>
<td>Los Angeles, USA</td>
<td>Multi-Century</td>
<td>1.9 (0.44-3.5)</td>
<td>3.0 (1.1-4.8)</td>
<td>4.8 (2.5-7.1)</td>
<td>6.5 (4.0-9.0)</td>
<td>8.8 (6.0-12)</td>
</tr>
<tr>
<td>Vancouver, Canada</td>
<td>Multi-Century</td>
<td>1.9 (0.41-3.4)</td>
<td>2.9 (1.1-4.7)</td>
<td>4.7 (2.4-6.9)</td>
<td>6.2 (3.7-8.7)</td>
<td>8.4 (5.6-11)</td>
</tr>
<tr>
<td>London, UK</td>
<td>Multi-Century</td>
<td>1.9 (0.36-3.4)</td>
<td>2.8 (0.99-4.6)</td>
<td>4.5 (2.3-6.8)</td>
<td>5.8 (3.2-8.3)</td>
<td>7.4 (4.6-10)</td>
</tr>
<tr>
<td>Amsterdam, Netherlands</td>
<td>Multi-Century</td>
<td>1.9 (0.37-3.4)</td>
<td>2.9 (1.0-4.7)</td>
<td>4.6 (2.3-6.9)</td>
<td>5.9 (3.3-8.4)</td>
<td>7.6 (4.7-10)</td>
</tr>
<tr>
<td>Dubai, UAE</td>
<td>Multi-Century</td>
<td>1.9 (0.45-3.4)</td>
<td>3.0 (1.2-4.7)</td>
<td>4.8 (2.6-7.1)</td>
<td>6.5 (4.0-9.0)</td>
<td>8.9 (6.2-12)</td>
</tr>
<tr>
<td>Cape Town, South Africa</td>
<td>Multi-Century</td>
<td>1.8 (0.44-3.2)</td>
<td>2.8 (1.1-4.5)</td>
<td>4.6 (2.5-6.7)</td>
<td>6.4 (4.1-8.7)</td>
<td>8.9 (6.4-11)</td>
</tr>
<tr>
<td>Lagos, Nigeria</td>
<td>Multi-Century</td>
<td>1.9 (0.44-3.4)</td>
<td>2.9 (1.1-4.7)</td>
<td>4.8 (2.5-7.0)</td>
<td>6.5 (4.0-8.9)</td>
<td>8.9 (6.1-12)</td>
</tr>
</tbody>
</table>

Table S1: Multi-century and projected 2100 sea level rise (m) for different warming levels (°C) at select locations. “Present Emissions” denotes warming and sea level projections based on cumulative emissions through 2020 only, assuming no further net emissions. The 66% confidence intervals are in parentheses.
<table>
<thead>
<tr>
<th>Country</th>
<th>4°C (8.9m)</th>
<th>3°C (6.4m)</th>
<th>2°C (4.7m)</th>
<th>1.5°C (2.9m)</th>
<th>Present (1.9m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>920 (830-1000)</td>
<td>810 (670-900)</td>
<td>700 (490-830)</td>
<td>510 (210-710)</td>
<td>360 (120-650)</td>
</tr>
<tr>
<td>China</td>
<td>220 (210-230)</td>
<td>200 (180-220)</td>
<td>180 (140-200)</td>
<td>150 (58-190)</td>
<td>110 (26-170)</td>
</tr>
<tr>
<td>India</td>
<td>100 (94-110)</td>
<td>91 (75-100)</td>
<td>78 (56-93)</td>
<td>58 (30-79)</td>
<td>43 (19-71)</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>92 (83-100)</td>
<td>81 (67-90)</td>
<td>69 (48-82)</td>
<td>50 (19-70)</td>
<td>35 (9.4-64)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>56 (50-60)</td>
<td>49 (41-54)</td>
<td>43 (32-49)</td>
<td>33 (12-43)</td>
<td>24 (5.8-40)</td>
</tr>
<tr>
<td>Vietnam</td>
<td>55 (53-56)</td>
<td>52 (48-54)</td>
<td>49 (41-52)</td>
<td>42 (28-49)</td>
<td>36 (20-47)</td>
</tr>
<tr>
<td>Japan</td>
<td>43 (39-45)</td>
<td>38 (34-42)</td>
<td>35 (25-39)</td>
<td>26 (6.3-35)</td>
<td>13 (3.5-32)</td>
</tr>
<tr>
<td>United States</td>
<td>30 (25-35)</td>
<td>24 (16-30)</td>
<td>18 (7.5-26)</td>
<td>8.5 (1.3-19)</td>
<td>3.6 (0.54-15)</td>
</tr>
<tr>
<td>Egypt</td>
<td>30 (27-33)</td>
<td>26 (19-30)</td>
<td>21 (8.2-27)</td>
<td>9.1 (4.5-22)</td>
<td>5.6 (3.4-18)</td>
</tr>
<tr>
<td>Philippines</td>
<td>30 (28-32)</td>
<td>27 (21-30)</td>
<td>21 (15-27)</td>
<td>16 (6.9-21)</td>
<td>11 (4.3-20)</td>
</tr>
<tr>
<td>Thailand</td>
<td>24 (23-24)</td>
<td>22 (21-23)</td>
<td>21 (19-23)</td>
<td>19 (11-21)</td>
<td>16 (3.7-20)</td>
</tr>
<tr>
<td>Brazil</td>
<td>19 (16-21)</td>
<td>15 (11-18)</td>
<td>11 (5.3-15)</td>
<td>5.7 (1.00-11)</td>
<td>2.4 (0.56-9.4)</td>
</tr>
<tr>
<td>Myanmar</td>
<td>16 (15-17)</td>
<td>14 (12-16)</td>
<td>12 (7.0-14)</td>
<td>7.4 (2.0-12)</td>
<td>3.9 (1.3-11)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>11 (8.9-12)</td>
<td>8.7 (6.6-10)</td>
<td>7.0 (3.3-8.9)</td>
<td>3.7 (0.22-7.2)</td>
<td>1.7 (0.10-6.3)</td>
</tr>
<tr>
<td>Malaysia</td>
<td>9.6 (8.7-10)</td>
<td>8.4 (6.7-9.4)</td>
<td>6.9 (4.7-8.5)</td>
<td>4.8 (1.6-7.0)</td>
<td>3.0 (0.72-6.3)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>8.0 (6.7-9.1)</td>
<td>7.0 (5.6-8.2)</td>
<td>6.2 (4.3-7.5)</td>
<td>4.7 (1.6-6.4)</td>
<td>3.2 (0.74-6.0)</td>
</tr>
<tr>
<td>Mexico</td>
<td>7.5 (6.0-8.9)</td>
<td>5.7 (3.4-7.3)</td>
<td>3.8 (1.6-6.0)</td>
<td>1.8 (0.25-3.9)</td>
<td>0.73 (0.11-3.1)</td>
</tr>
<tr>
<td>Pakistan</td>
<td>7.5 (6.0-8.6)</td>
<td>5.5 (3.9-7.2)</td>
<td>4.1 (2.6-5.9)</td>
<td>2.7 (0.71-4.2)</td>
<td>1.6 (0.33-3.7)</td>
</tr>
<tr>
<td>South Korea</td>
<td>7.2 (6.1-8.5)</td>
<td>5.6 (4.5-6.9)</td>
<td>4.6 (3.1-5.8)</td>
<td>3.2 (0.92-4.6)</td>
<td>1.8 (0.41-4.1)</td>
</tr>
<tr>
<td>Iraq</td>
<td>5.5 (5.0-5.9)</td>
<td>5.0 (4.6-5.4)</td>
<td>4.7 (4.3-5.1)</td>
<td>4.4 (3.3-4.8)</td>
<td>4.0 (2.5-4.6)</td>
</tr>
<tr>
<td>Italy</td>
<td>5.3 (4.4-6.1)</td>
<td>4.4 (3.1-5.3)</td>
<td>3.5 (1.1-4.7)</td>
<td>1.3 (0.35-3.7)</td>
<td>0.56 (0.26-3.1)</td>
</tr>
</tbody>
</table>

Table S2: Millions of people currently occupying land below high tide lines under multi-century projections and different equilibrium warming scenarios – for the 20 most-affected countries and globally. ‘Present’ denotes warming and sea level projections based on cumulative emissions through 2020 only, assuming no further net emissions. Countries are ranked by multi-century vulnerability after 4°C warming. 66% confidence intervals are in parentheses. Median global multi-century sea level rise projections are noted in parentheses next to their corresponding warming scenario headers.
<table>
<thead>
<tr>
<th>Country</th>
<th>4°C</th>
<th>3°C</th>
<th>2°C</th>
<th>1.5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>3.0 (2.4-3.9)</td>
<td>2.8 (2.3-3.5)</td>
<td>2.6 (2.2-3.3)</td>
<td>2.5 (2.1-3.1)</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>22 (18-26)</td>
<td>20 (17-24)</td>
<td>19 (16-23)</td>
<td>18 (16-21)</td>
</tr>
<tr>
<td>Vietnam</td>
<td>30 (25-35)</td>
<td>28 (24-33)</td>
<td>27 (24-32)</td>
<td>26 (23-31)</td>
</tr>
<tr>
<td>Egypt</td>
<td>5.2 (4.7-6.0)</td>
<td>5.1 (4.7-5.6)</td>
<td>4.7 (4.2-6.0)</td>
<td>4.9 (4.6-5.3)</td>
</tr>
<tr>
<td>Thailand</td>
<td>21 (18-23)</td>
<td>20 (17-22)</td>
<td>19 (17-21)</td>
<td>18 (16-21)</td>
</tr>
<tr>
<td>Malaysia</td>
<td>4.5 (3.2-6.2)</td>
<td>4.0 (3.0-5.4)</td>
<td>3.6 (2.8-4.9)</td>
<td>3.3 (2.6-4.5)</td>
</tr>
<tr>
<td>Philippines</td>
<td>7.6 (6.5-9.0)</td>
<td>7.1 (6.2-8.2)</td>
<td>6.7 (5.9-7.7)</td>
<td>6.3 (5.7-7.2)</td>
</tr>
<tr>
<td>Japan</td>
<td>4.2 (3.4-5.4)</td>
<td>3.8 (3.1-4.8)</td>
<td>3.6 (3.0-4.3)</td>
<td>3.3 (2.9-4.0)</td>
</tr>
<tr>
<td>Myanmar</td>
<td>3.5 (2.8-4.6)</td>
<td>3.3 (2.6-4.1)</td>
<td>3.1 (2.5-3.8)</td>
<td>2.9 (2.4-3.6)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>4.3 (3.0-6.1)</td>
<td>3.8 (2.8-5.2)</td>
<td>3.5 (2.6-4.8)</td>
<td>3.2 (2.4-4.4)</td>
</tr>
<tr>
<td>China</td>
<td>3.8 (2.5-5.5)</td>
<td>3.4 (2.3-4.9)</td>
<td>3.0 (2.2-4.3)</td>
<td>2.7 (2.0-3.9)</td>
</tr>
<tr>
<td>Iraq</td>
<td>9.6 (8.2-11)</td>
<td>9.3 (8.3-10)</td>
<td>8.5 (7.4-11)</td>
<td>9.0 (8.1-9.8)</td>
</tr>
<tr>
<td>South Korea</td>
<td>1.6 (1.1-2.1)</td>
<td>1.4 (0.98-1.9)</td>
<td>1.2 (0.94-1.7)</td>
<td>1.1 (0.89-1.5)</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1.8 (1.3-2.4)</td>
<td>1.6 (1.2-2.0)</td>
<td>1.3 (0.66-2.6)</td>
<td>1.4 (1.00-1.8)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2.1 (1.7-2.6)</td>
<td>1.8 (1.5-2.3)</td>
<td>1.7 (1.4-2.3)</td>
<td>1.6 (1.3-2.0)</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.23 (0.15-0.34)</td>
<td>0.18 (0.13-0.28)</td>
<td>0.16 (0.12-0.26)</td>
<td>0.14 (0.11-0.21)</td>
</tr>
<tr>
<td>United States</td>
<td>0.47 (0.36-0.62)</td>
<td>0.42 (0.32-0.55)</td>
<td>0.39 (0.30-0.51)</td>
<td>0.35 (0.29-0.44)</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.47 (0.38-0.61)</td>
<td>0.42 (0.34-0.53)</td>
<td>0.40 (0.33-0.50)</td>
<td>0.37 (0.32-0.45)</td>
</tr>
<tr>
<td>Spain</td>
<td>0.47 (0.31-0.69)</td>
<td>0.43 (0.30-0.59)</td>
<td>0.35 (0.22-0.57)</td>
<td>0.37 (0.28-0.48)</td>
</tr>
<tr>
<td>India</td>
<td>2.4 (2.0-2.9)</td>
<td>2.3 (1.9-2.7)</td>
<td>2.2 (1.8-2.6)</td>
<td>2.1 (1.7-2.4)</td>
</tr>
<tr>
<td>Italy</td>
<td>0.56 (0.49-0.60)</td>
<td>0.55 (0.49-0.59)</td>
<td>0.49 (0.42-0.62)</td>
<td>0.53 (0.49-0.57)</td>
</tr>
</tbody>
</table>

Table S3: Percentage of population currently occupying land below high tide lines in 2100 for different warming scenarios – for the 20 long-term most-affected large countries (total population at least 2.5M) and globally. Countries are ranked by multi-century percentage vulnerability after 4°C warming (see Table 1). 66% confidence intervals are in parentheses.
<table>
<thead>
<tr>
<th>Country</th>
<th>4°C</th>
<th>3°C</th>
<th>2°C</th>
<th>1.5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>200 (160-260)</td>
<td>190 (150-240)</td>
<td>180 (140-220)</td>
<td>170 (140-210)</td>
</tr>
<tr>
<td>China</td>
<td>49 (33-71)</td>
<td>43 (29-63)</td>
<td>39 (28-56)</td>
<td>35 (26-51)</td>
</tr>
<tr>
<td>India</td>
<td>29 (24-34)</td>
<td>27 (22-32)</td>
<td>25 (21-30)</td>
<td>24 (20-29)</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>30 (25-36)</td>
<td>28 (23-33)</td>
<td>27 (23-31)</td>
<td>25 (22-30)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>9.9 (7.1-14)</td>
<td>8.9 (6.5-12)</td>
<td>8.2 (6.0-11)</td>
<td>7.5 (5.7-10)</td>
</tr>
<tr>
<td>Vietnam</td>
<td>25 (22-29)</td>
<td>24 (21-28)</td>
<td>23 (20-27)</td>
<td>22 (20-26)</td>
</tr>
<tr>
<td>Japan</td>
<td>5.3 (4.3-6.8)</td>
<td>4.8 (3.9-6.0)</td>
<td>4.5 (3.8-5.5)</td>
<td>4.2 (3.6-5.1)</td>
</tr>
<tr>
<td>United States</td>
<td>1.4 (1.1-1.9)</td>
<td>1.3 (0.97-1.7)</td>
<td>1.2 (0.94-1.6)</td>
<td>1.1 (0.88-1.4)</td>
</tr>
<tr>
<td>Egypt</td>
<td>4.0 (3.6-4.6)</td>
<td>3.9 (3.6-4.4)</td>
<td>3.7 (3.3-4.7)</td>
<td>3.8 (3.6-4.1)</td>
</tr>
<tr>
<td>Philippines</td>
<td>6.7 (5.8-7.9)</td>
<td>6.2 (5.4-7.2)</td>
<td>5.9 (5.2-6.8)</td>
<td>5.6 (5.0-6.3)</td>
</tr>
<tr>
<td>Thailand</td>
<td>14 (12-15)</td>
<td>13 (11-14)</td>
<td>13 (11-14)</td>
<td>12 (10-14)</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.89 (0.72-1.2)</td>
<td>0.80 (0.64-1.00)</td>
<td>0.76 (0.63-0.95)</td>
<td>0.70 (0.61-0.86)</td>
</tr>
<tr>
<td>Myanmar</td>
<td>1.8 (1.4-2.4)</td>
<td>1.7 (1.3-2.1)</td>
<td>1.6 (1.3-2.0)</td>
<td>1.5 (1.3-1.8)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.19 (0.13-0.44)</td>
<td>0.16 (0.12-0.23)</td>
<td>0.14 (0.11-0.20)</td>
<td>0.13 (0.11-0.18)</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1.2 (0.87-1.7)</td>
<td>1.1 (0.80-1.5)</td>
<td>0.97 (0.75-1.3)</td>
<td>0.90 (0.71-1.2)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.3 (1.00-1.6)</td>
<td>1.1 (0.93-1.4)</td>
<td>1.1 (0.88-1.4)</td>
<td>1.00 (0.84-1.3)</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.23 (0.17-0.35)</td>
<td>0.20 (0.14-0.29)</td>
<td>0.19 (0.14-0.26)</td>
<td>0.17 (0.13-0.22)</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0.61 (0.46-0.79)</td>
<td>0.54 (0.41-0.71)</td>
<td>0.48 (0.39-0.63)</td>
<td>0.45 (0.38-0.57)</td>
</tr>
<tr>
<td>South Korea</td>
<td>0.73 (0.52-1.00)</td>
<td>0.66 (0.47-0.90)</td>
<td>0.59 (0.45-0.80)</td>
<td>0.53 (0.42-0.72)</td>
</tr>
<tr>
<td>Iraq</td>
<td>3.1 (2.7-3.5)</td>
<td>3.0 (2.7-3.3)</td>
<td>2.7 (2.4-3.6)</td>
<td>2.9 (2.6-3.2)</td>
</tr>
<tr>
<td>Italy</td>
<td>0.33 (0.29-0.35)</td>
<td>0.32 (0.29-0.35)</td>
<td>0.29 (0.25-0.36)</td>
<td>0.31 (0.29-0.34)</td>
</tr>
</tbody>
</table>

Table S4: Millions of people currently occupying land below high tide lines in 2100 for different warming scenarios – for the 20 long-term most-affected countries and globally. Countries are ranked by multi-century vulnerability after 4°C warming (see Table S2). 66% confidence intervals are in parentheses.
<table>
<thead>
<tr>
<th>Place</th>
<th>Country</th>
<th>4°C</th>
<th>3°C</th>
<th>2°C</th>
<th>1.5°C</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanghai</td>
<td>China</td>
<td>31 (31-32)</td>
<td>31 (29-31)</td>
<td>30 (26-31)</td>
<td>27 (15-30)</td>
<td>23 (6.5-28)</td>
</tr>
<tr>
<td>Dhaka</td>
<td>Bangladesh</td>
<td>25 (23-26)</td>
<td>23 (18-25)</td>
<td>20 (12-24)</td>
<td>14 (5.6-20)</td>
<td>9.0 (3.0-16)</td>
</tr>
<tr>
<td>Calcutta</td>
<td>India</td>
<td>16 (14-17)</td>
<td>15 (12-16)</td>
<td>13 (8.5-15)</td>
<td>9.3 (4.6-13)</td>
<td>7.0 (1.7-10)</td>
</tr>
<tr>
<td>Tianjin</td>
<td>China</td>
<td>16 (14-17)</td>
<td>14 (11-16)</td>
<td>12 (8.1-14)</td>
<td>9.1 (4.6-12)</td>
<td>6.3 (0.70-9.7)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>China</td>
<td>14 (14-15)</td>
<td>14 (12-14)</td>
<td>13 (10-14)</td>
<td>11 (5.1-13)</td>
<td>8.1 (3.4-11)</td>
</tr>
<tr>
<td>Mumbai</td>
<td>India</td>
<td>14 (13-14)</td>
<td>13 (12-14)</td>
<td>12 (11-13)</td>
<td>11 (9.8-12)</td>
<td>11 (8.5-12)</td>
</tr>
<tr>
<td>Jakarta</td>
<td>Indonesia</td>
<td>12 (10-13)</td>
<td>11 (9.1-12)</td>
<td>9.6 (7.5-11)</td>
<td>8.0 (3.5-9.6)</td>
<td>6.1 (1.5-8.5)</td>
</tr>
<tr>
<td>Haora</td>
<td>India</td>
<td>11 (10-11)</td>
<td>10 (8.8-11)</td>
<td>9.5 (6.2-10)</td>
<td>6.9 (2.5-9.4)</td>
<td>4.0 (1.3-7.8)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Japan</td>
<td>10 (9.1-11)</td>
<td>9.1 (8.0-10)</td>
<td>8.4 (6.2-9.3)</td>
<td>6.9 (1.1-8.3)</td>
<td>3.3 (0.40-7.4)</td>
</tr>
<tr>
<td>Hanoi</td>
<td>Vietnam</td>
<td>9.6 (8.9-9.8)</td>
<td>9.0 (7.0-9.6)</td>
<td>7.8 (4.7-9.2)</td>
<td>5.1 (2.2-7.7)</td>
<td>3.6 (0.75-5.6)</td>
</tr>
<tr>
<td>Shantou</td>
<td>China</td>
<td>9.4 (8.5-10)</td>
<td>8.6 (6.9-9.4)</td>
<td>7.5 (4.8-8.8)</td>
<td>5.4 (1.2-7.4)</td>
<td>3.3 (0.37-5.9)</td>
</tr>
<tr>
<td>Osaka</td>
<td>Japan</td>
<td>6.8 (6.1-7.3)</td>
<td>6.2 (5.4-6.7)</td>
<td>5.7 (2.6-6.3)</td>
<td>3.7 (0.38-5.7)</td>
<td>0.77 (0.24-4.5)</td>
</tr>
<tr>
<td>Surabaya</td>
<td>Indonesia</td>
<td>4.9 (4.4-5.2)</td>
<td>4.4 (3.9-4.9)</td>
<td>4.1 (3.5-4.5)</td>
<td>3.6 (1.5-4.1)</td>
<td>2.9 (0.69-3.7)</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>China</td>
<td>4.8 (4.2-5.2)</td>
<td>4.3 (3.6-4.8)</td>
<td>3.8 (3.0-4.4)</td>
<td>3.2 (1.5-3.8)</td>
<td>2.4 (0.78-3.3)</td>
</tr>
<tr>
<td>Rajshahi</td>
<td>Bangladesh</td>
<td>4.7 (1.2-10)</td>
<td>1.5 (0.03-4.7)</td>
<td>0.17 (0.00-1.9)</td>
<td>0.01 (0.00-0.13)</td>
<td>0.00 (0.00-0.01)</td>
</tr>
<tr>
<td>Karachi</td>
<td>Pakistan</td>
<td>3.8 (3.2-4.1)</td>
<td>3.3 (2.5-3.8)</td>
<td>2.8 (1.6-3.4)</td>
<td>1.9 (0.56-2.8)</td>
<td>1.1 (0.26-2.1)</td>
</tr>
<tr>
<td>New York</td>
<td>United States</td>
<td>3.5 (1.9-4.6)</td>
<td>2.4 (1.1-3.8)</td>
<td>1.7 (0.63-2.9)</td>
<td>0.83 (0.25-1.7)</td>
<td>0.46 (0.13-1.00)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Argentina</td>
<td>3.0 (2.4-3.5)</td>
<td>2.4 (1.8-3.0)</td>
<td>2.0 (0.75-2.5)</td>
<td>1.1 (0.00-2.0)</td>
<td>0.01 (0.00-1.4)</td>
</tr>
<tr>
<td>Quezon City</td>
<td>Philippines</td>
<td>2.8 (2.3-3.2)</td>
<td>2.3 (1.3-2.8)</td>
<td>1.5 (0.74-2.5)</td>
<td>0.90 (0.30-1.4)</td>
<td>0.39 (0.21-1.1)</td>
</tr>
<tr>
<td>Seoul</td>
<td>South Korea</td>
<td>2.6 (1.6-3.7)</td>
<td>1.7 (1.1-2.6)</td>
<td>1.3 (0.67-1.9)</td>
<td>0.83 (0.23-1.2)</td>
<td>0.45 (0.11-0.95)</td>
</tr>
<tr>
<td>Cairo</td>
<td>Egypt</td>
<td>1.2 (0.49-2.3)</td>
<td>0.61 (0.05-1.3)</td>
<td>0.19 (0.00-0.78)</td>
<td>0.02 (0.00-0.18)</td>
<td>0.00 (0.00-0.03)</td>
</tr>
</tbody>
</table>

Table S5: Millions of people currently occupying land below high tide lines under multi-century projections and different equilibrium warming scenarios – for the 20 most-affected urban agglomerations. “Present” denotes warming and sea level projections based on cumulative emissions through 2020 only, assuming no further net emissions. UAs are ranked by multi-century vulnerability after 4°C warming. 66% confidence intervals are in parentheses.
<table>
<thead>
<tr>
<th>Place</th>
<th>Country</th>
<th>4°C</th>
<th>3°C</th>
<th>2°C</th>
<th>1.5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haora</td>
<td>India</td>
<td>32 (27-39)</td>
<td>30 (25-36)</td>
<td>28 (24-34)</td>
<td>27 (23-31)</td>
</tr>
<tr>
<td>Shanghai</td>
<td>China</td>
<td>34 (23-50)</td>
<td>31 (20-45)</td>
<td>28 (19-39)</td>
<td>25 (19-35)</td>
</tr>
<tr>
<td>Hanoi</td>
<td>Vietnam</td>
<td>13 (6.0-21)</td>
<td>11 (4.5-19)</td>
<td>9.1 (3.5-17)</td>
<td>8.0 (2.6-15)</td>
</tr>
<tr>
<td>Dhaka</td>
<td>Bangladesh</td>
<td>38 (33-43)</td>
<td>36 (31-41)</td>
<td>35 (30-39)</td>
<td>33 (29-37)</td>
</tr>
<tr>
<td>Calcutta</td>
<td>India</td>
<td>32 (26-37)</td>
<td>30 (24-35)</td>
<td>28 (23-33)</td>
<td>26 (21-32)</td>
</tr>
<tr>
<td>Shantou</td>
<td>China</td>
<td>5.1 (2.5-9.4)</td>
<td>4.3 (1.8-7.5)</td>
<td>3.6 (1.4-6.3)</td>
<td>3.2 (1.1-5.8)</td>
</tr>
<tr>
<td>Mumbai</td>
<td>India</td>
<td>49 (46-52)</td>
<td>48 (45-51)</td>
<td>47 (44-49)</td>
<td>46 (43-48)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>China</td>
<td>17 (15-21)</td>
<td>16 (14-19)</td>
<td>15 (14-18)</td>
<td>15 (13-17)</td>
</tr>
<tr>
<td>Osaka</td>
<td>Japan</td>
<td>2.4 (2.0-2.7)</td>
<td>2.2 (1.8-2.6)</td>
<td>2.1 (1.8-2.4)</td>
<td>2.0 (1.7-2.3)</td>
</tr>
<tr>
<td>Tianjin</td>
<td>China</td>
<td>7.2 (1.9-12)</td>
<td>5.1 (1.7-11)</td>
<td>3.5 (1.6-9.5)</td>
<td>2.1 (1.4-7.3)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Japan</td>
<td>2.5 (1.6-3.9)</td>
<td>2.1 (1.2-3.0)</td>
<td>1.9 (1.1-2.7)</td>
<td>1.6 (0.94-2.4)</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>China</td>
<td>7.7 (6.0-11)</td>
<td>6.9 (5.8-9.4)</td>
<td>6.3 (5.5-8.6)</td>
<td>6.1 (5.4-7.9)</td>
</tr>
<tr>
<td>Karachi</td>
<td>Pakistan</td>
<td>3.3 (2.4-4.5)</td>
<td>2.9 (2.1-3.9)</td>
<td>2.5 (2.0-3.5)</td>
<td>2.4 (1.9-3.2)</td>
</tr>
<tr>
<td>Jakarta</td>
<td>Indonesia</td>
<td>5.8 (3.5-9.2)</td>
<td>5.1 (3.0-7.7)</td>
<td>4.6 (2.6-6.9)</td>
<td>4.2 (2.2-6.4)</td>
</tr>
<tr>
<td>Surabaya</td>
<td>Indonesia</td>
<td>5.8 (4.4-8.5)</td>
<td>5.2 (4.1-6.7)</td>
<td>4.8 (3.9-6.2)</td>
<td>4.4 (3.7-5.6)</td>
</tr>
<tr>
<td>New York</td>
<td>United States</td>
<td>1.8 (1.4-2.3)</td>
<td>1.6 (1.1-2.1)</td>
<td>1.5 (1.1-1.9)</td>
<td>1.3 (0.94-1.6)</td>
</tr>
<tr>
<td>Quezon City</td>
<td>Philippines</td>
<td>2.9 (2.6-3.2)</td>
<td>2.7 (2.4-3.0)</td>
<td>2.6 (2.4-2.9)</td>
<td>2.5 (2.3-2.7)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Argentina</td>
<td>0.02 (0.02-0.02)</td>
<td>0.02 (0.02-0.02)</td>
<td>0.02 (0.02-0.02)</td>
<td>0.02 (0.02-0.02)</td>
</tr>
<tr>
<td>Seoul</td>
<td>South Korea</td>
<td>0.96 (0.67-1.4)</td>
<td>0.87 (0.60-1.2)</td>
<td>0.78 (0.57-1.1)</td>
<td>0.71 (0.53-0.97)</td>
</tr>
<tr>
<td>Rajshahi</td>
<td>Bangladesh</td>
<td>0.01 (0.01-0.01)</td>
<td>0.01 (0.01-0.01)</td>
<td>0.01 (0.01-0.01)</td>
<td>0.01 (0.01-0.01)</td>
</tr>
<tr>
<td>Cairo</td>
<td>Egypt</td>
<td>0.00 (0.00-0.00)</td>
<td>0.00 (0.00-0.00)</td>
<td>0.00 (0.00-0.00)</td>
<td>0.00 (0.00-0.00)</td>
</tr>
</tbody>
</table>

Table S6: Percentage of population currently occupying land below high tide lines in 2100 for different warming scenarios – for the 20 long-term most-affected large urban agglomerations (total population at least one million) and globally. UAs are ranked by multi-century percentage vulnerability after 4°C warming (see Table 2). 66% confidence intervals are in parentheses.
Table S7: Millions of people currently occupying land below high tide lines in 2100 for different warming scenarios – for the 20 long-term most-affected urban agglomerations. UAs are ranked by multi-century vulnerability after 4°C warming (see Table S5). 66% confidence intervals are in parentheses.
<table>
<thead>
<tr>
<th>Place</th>
<th>Country</th>
<th>4°C</th>
<th>3°C</th>
<th>2°C</th>
<th>1.5°C</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haora</td>
<td>India</td>
<td>97 (85-100)</td>
<td>87 (45-97)</td>
<td>63 (14-90)</td>
<td>19 (0.15-61)</td>
<td>6.9 (0.08-27)</td>
</tr>
<tr>
<td>Shanghai</td>
<td>China</td>
<td>95 (90-96)</td>
<td>91 (76-95)</td>
<td>83 (27-92)</td>
<td>40 (7.5-82)</td>
<td>12 (3.4-56)</td>
</tr>
<tr>
<td>Hanoi</td>
<td>Vietnam</td>
<td>87 (70-92)</td>
<td>72 (39-87)</td>
<td>47 (10-76)</td>
<td>18 (0.06-46)</td>
<td>0.65 (0.00-23)</td>
</tr>
<tr>
<td>Dhaka</td>
<td>Bangladesh</td>
<td>84 (67-91)</td>
<td>70 (35-84)</td>
<td>48 (12-74)</td>
<td>17 (0.83-46)</td>
<td>5.1 (0.09-22)</td>
</tr>
<tr>
<td>Calcutta</td>
<td>India</td>
<td>79 (67-88)</td>
<td>69 (40-79)</td>
<td>49 (13-73)</td>
<td>21 (0.69-48)</td>
<td>3.5 (0.07-30)</td>
</tr>
<tr>
<td>Mumbai</td>
<td>India</td>
<td>71 (66-75)</td>
<td>67 (58-71)</td>
<td>62 (48-68)</td>
<td>52 (32-61)</td>
<td>40 (25-54)</td>
</tr>
<tr>
<td>Shantou</td>
<td>China</td>
<td>70 (57-76)</td>
<td>58 (32-70)</td>
<td>42 (4.4-61)</td>
<td>7.1 (0.25-41)</td>
<td>0.32 (0.13-12)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>China</td>
<td>62 (56-66)</td>
<td>57 (41-62)</td>
<td>49 (17-58)</td>
<td>21 (6.8-48)</td>
<td>12 (3.1-26)</td>
</tr>
<tr>
<td>Osaka</td>
<td>Japan</td>
<td>43 (38-47)</td>
<td>39 (11-43)</td>
<td>25 (2.0-40)</td>
<td>2.4 (1.3-23)</td>
<td>1.5 (1.1-3.0)</td>
</tr>
<tr>
<td>Tianjin</td>
<td>China</td>
<td>40 (33-44)</td>
<td>33 (19-40)</td>
<td>25 (5.0-35)</td>
<td>11 (0.31-24)</td>
<td>0.82 (0.03-14)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Japan</td>
<td>37 (33-41)</td>
<td>33 (21-37)</td>
<td>27 (2.5-34)</td>
<td>3.9 (0.18-27)</td>
<td>0.32 (0.02-6.5)</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>China</td>
<td>35 (30-39)</td>
<td>30 (22-35)</td>
<td>25 (7.6-31)</td>
<td>11 (3.7-25)</td>
<td>4.9 (1.00-14)</td>
</tr>
<tr>
<td>Karachi</td>
<td>Pakistan</td>
<td>30 (23-35)</td>
<td>24 (12-31)</td>
<td>16 (2.7-26)</td>
<td>4.1 (0.38-15)</td>
<td>1.2 (0.13-5.8)</td>
</tr>
<tr>
<td>Jakarta</td>
<td>Indonesia</td>
<td>28 (24-31)</td>
<td>24 (17-28)</td>
<td>20 (5.2-25)</td>
<td>7.6 (0.65-20)</td>
<td>1.4 (0.19-11)</td>
</tr>
<tr>
<td>Surabaya</td>
<td>Indonesia</td>
<td>27 (24-30)</td>
<td>24 (19-27)</td>
<td>22 (5.3-25)</td>
<td>7.7 (2.2-22)</td>
<td>2.7 (0.01-12)</td>
</tr>
<tr>
<td>Quezon City</td>
<td>Philippines</td>
<td>23 (13-28)</td>
<td>13 (5.5-23)</td>
<td>8.4 (2.2-14)</td>
<td>2.6 (0.70-7.9)</td>
<td>1.5 (0.04-3.1)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Argentina</td>
<td>22 (16-26)</td>
<td>16 (1.3-21)</td>
<td>7.4 (0.02-17)</td>
<td>0.02 (0.00-6.4)</td>
<td>0.01 (0.00-0.03)</td>
</tr>
<tr>
<td>New York</td>
<td>United States</td>
<td>19 (7.6-31)</td>
<td>11 (2.9-22)</td>
<td>5.9 (1.00-15)</td>
<td>1.7 (0.03-6.0)</td>
<td>0.26 (0.02-2.5)</td>
</tr>
<tr>
<td>Seoul</td>
<td>South Korea</td>
<td>13 (7.6-19)</td>
<td>7.8 (3.5-13)</td>
<td>5.2 (0.95-8.5)</td>
<td>1.3 (0.17-5.0)</td>
<td>0.39 (0.07-1.8)</td>
</tr>
<tr>
<td>Rajshahi</td>
<td>Bangladesh</td>
<td>6.4 (0.14-20)</td>
<td>0.17 (0.01-6.4)</td>
<td>0.02 (0.01-0.91)</td>
<td>0.01 (0.00-0.01)</td>
<td>0.01 (0.00-0.01)</td>
</tr>
<tr>
<td>Cairo</td>
<td>Egypt</td>
<td>5.1 (0.40-11)</td>
<td>0.81 (0.00-5.5)</td>
<td>0.05 (0.00-1.9)</td>
<td>0.00 (0.00-0.04)</td>
<td>0.00 (0.00-0.00)</td>
</tr>
</tbody>
</table>

Table S8: Percentage of population currently occupying land more than 2 m below projected high tide lines under a multi-century timeframe and different equilibrium warming scenarios – for the 20 most-affected large urban agglomerations (total population at least one million) and globally. “Present” denotes warming and sea level projections based on cumulative emissions through 2020 only, assuming no further net emissions. UAs are ranked by multi-century percentage vulnerability after 4°C warming. Vulnerability below -2 m from SLR by 2100 is near zero. 66% confidence intervals are in parentheses.
<table>
<thead>
<tr>
<th>Place</th>
<th>Country</th>
<th>4°C</th>
<th>3°C</th>
<th>2°C</th>
<th>1.5°C</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanghai</td>
<td>China</td>
<td>31 (29-31)</td>
<td>30 (25-31)</td>
<td>27 (8.9-30)</td>
<td>13 (2.4-27)</td>
<td>4.0 (1.1-18)</td>
</tr>
<tr>
<td>Dhaka</td>
<td>Bangladesh</td>
<td>24 (19-26)</td>
<td>20 (10-24)</td>
<td>13 (3.4-21)</td>
<td>4.8 (0.23-13)</td>
<td>1.4 (0.03-6.2)</td>
</tr>
<tr>
<td>Calcutta</td>
<td>India</td>
<td>15 (12-16)</td>
<td>13 (7.6-15)</td>
<td>9.1 (2.4-14)</td>
<td>3.9 (0.13-8.9)</td>
<td>0.65 (0.01-5.5)</td>
</tr>
<tr>
<td>Tianjin</td>
<td>China</td>
<td>14 (12-16)</td>
<td>12 (7.0-14)</td>
<td>9.0 (1.8-13)</td>
<td>4.2 (0.11-8.7)</td>
<td>0.30 (0.01-5.1)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>China</td>
<td>14 (12-15)</td>
<td>13 (9.2-14)</td>
<td>11 (3.8-13)</td>
<td>4.6 (1.5-11)</td>
<td>2.8 (0.69-5.9)</td>
</tr>
<tr>
<td>Mumbai</td>
<td>India</td>
<td>13 (12-14)</td>
<td>12 (11-13)</td>
<td>11 (8.9-13)</td>
<td>9.6 (5.9-11)</td>
<td>7.4 (4.7-10)</td>
</tr>
<tr>
<td>Jakarta</td>
<td>Indonesia</td>
<td>11 (9.4-12)</td>
<td>9.5 (6.8-11)</td>
<td>7.9 (2.1-9.8)</td>
<td>3.0 (0.26-7.8)</td>
<td>0.56 (0.08-4.2)</td>
</tr>
<tr>
<td>Haora</td>
<td>India</td>
<td>10 (9.1-11)</td>
<td>9.3 (4.8-10)</td>
<td>6.7 (1.5-9.7)</td>
<td>2.1 (0.02-6.6)</td>
<td>0.74 (0.01-2.9)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Japan</td>
<td>9.4 (8.2-10)</td>
<td>8.3 (5.2-9.3)</td>
<td>6.9 (0.62-8.6)</td>
<td>0.98 (0.05-6.8)</td>
<td>0.08 (0.01-1.6)</td>
</tr>
<tr>
<td>Hanoi</td>
<td>Vietnam</td>
<td>9.2 (7.3-9.7)</td>
<td>7.6 (4.1-9.2)</td>
<td>5.0 (1.1-8.0)</td>
<td>1.9 (0.01-4.9)</td>
<td>0.07 (0.00-2.5)</td>
</tr>
<tr>
<td>Shantou</td>
<td>China</td>
<td>8.8 (7.2-9.6)</td>
<td>7.4 (4.0-8.8)</td>
<td>5.3 (0.55-7.7)</td>
<td>0.90 (0.03-5.1)</td>
<td>0.04 (0.02-1.5)</td>
</tr>
<tr>
<td>Osaka</td>
<td>Japan</td>
<td>6.3 (5.6-6.9)</td>
<td>5.7 (1.6-6.3)</td>
<td>3.7 (0.29-5.8)</td>
<td>0.36 (0.19-3.4)</td>
<td>0.22 (0.16-0.45)</td>
</tr>
<tr>
<td>Surabaya</td>
<td>Indonesia</td>
<td>4.5 (4.0-5.0)</td>
<td>4.0 (3.2-4.5)</td>
<td>3.6 (0.88-4.1)</td>
<td>1.3 (0.36-3.6)</td>
<td>0.44 (0.00-2.0)</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>China</td>
<td>4.4 (3.7-4.9)</td>
<td>3.8 (2.7-4.4)</td>
<td>3.2 (0.95-3.9)</td>
<td>1.3 (0.46-3.1)</td>
<td>0.62 (0.13-1.8)</td>
</tr>
<tr>
<td>Karachi</td>
<td>Pakistan</td>
<td>3.4 (2.6-3.9)</td>
<td>2.7 (1.3-3.4)</td>
<td>1.8 (0.30-2.9)</td>
<td>0.46 (0.04-1.7)</td>
<td>0.14 (0.01-0.65)</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Argentina</td>
<td>2.6 (1.9-3.1)</td>
<td>1.9 (0.15-2.5)</td>
<td>0.88 (0.00-2.0)</td>
<td>0.00 (0.00-0.77)</td>
<td>0.00 (0.00-0.00)</td>
</tr>
<tr>
<td>Quezon City</td>
<td>Philippines</td>
<td>2.5 (1.4-3.0)</td>
<td>1.4 (0.59-2.5)</td>
<td>0.90 (0.24-1.5)</td>
<td>0.28 (0.08-0.86)</td>
<td>0.17 (0.00-0.34)</td>
</tr>
<tr>
<td>New York</td>
<td>United States</td>
<td>2.4 (0.95-3.9)</td>
<td>1.4 (0.36-2.7)</td>
<td>0.73 (0.13-1.8)</td>
<td>0.22 (0.00-0.75)</td>
<td>0.03 (0.00-0.32)</td>
</tr>
<tr>
<td>Seoul</td>
<td>South Korea</td>
<td>2.0 (1.2-3.0)</td>
<td>1.2 (0.54-2.0)</td>
<td>0.82 (0.15-1.3)</td>
<td>0.21 (0.03-0.78)</td>
<td>0.06 (0.01-0.28)</td>
</tr>
<tr>
<td>Rajshahi</td>
<td>Bangladesh</td>
<td>1.9 (0.04-6.0)</td>
<td>0.05 (0.00-1.9)</td>
<td>0.00 (0.00-0.27)</td>
<td>0.00 (0.00-0.00)</td>
<td>0.00 (0.00-0.00)</td>
</tr>
<tr>
<td>Beijing</td>
<td>China</td>
<td>0.78 (0.33-1.1)</td>
<td>0.38 (0.00-0.78)</td>
<td>0.00 (0.00-0.47)</td>
<td>0.00 (0.00-0.00)</td>
<td>0.00 (0.00-0.00)</td>
</tr>
</tbody>
</table>

Table S9: Millions of people currently occupying land more than 2 m below projected high tide lines under a multi-century timeframe and different equilibrium warming scenarios – for the 20 most-affected urban agglomerations. “Present” denotes warming and sea level projections based on cumulative emissions through 2020 only, assuming no further net emissions. UAs are ranked by multi-century vulnerability after 4°C warming. Vulnerability below -2 m from SLR by 2100 is near zero. 66% confidence intervals are in parentheses.