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Experiments in quasi-two-dimensional geometry (Hele-Shaw cells) in which a fluid is injected into a
viscoelastic medium (foam, clay, or associating polymers) show patterns akin to fracture in brittle
materials, very different from standard Laplacian growth patterns of viscous fingering. An analytic
theory is lacking since a prerequisite to describing the fracture of elastic material is the solution of the
bi-Laplace rather than the Laplace equation. In this Letter we close this gap, offering a theory of bi-
Laplacian growth patterns based on the method of iterated conformal maps.

DOI: 10.1103/PhysRevLett.89.234501

Pattern formation for two-phase flow instabilities has
been intensely studied, both experimentally and theoreti-
cally, for the displacement of a viscous fluid from be-
tween parallel plates or from a porous medium [1]. In
these cases the velocity field v(r) is well described by
Darcy’s law v(r) « VP(r), where P(r) is the pressure. For
incompressible fluids V - v = 0, leading to the Laplace
equation for the pressure, V2P(r) = 0, with appropriate
boundary condition on the boundary of the growing pat-
tern and at “infinity.”” The theory for such ‘“Laplacian
growth” patterns in two dimensions [i.e., r = (x, y)] natu-
rally focuses on analytic functions (or their conformal
inverse) simply because the Cauchy-Riemann conditions
imply that the general solution of the Laplace equation is
given by the real part of an analytic function, P =
Re{F(z)}, where F(z) is the unique analytic function that
satisfies the boundary conditions, and z = x + iy [2,3].

Sporadically, over the last decade, there appeared ex-
perimental studies in which a low viscosity fluid displaces
not a more viscous fluid, but rather a medium which is
viscoelastic, like foam [4], clay [5], or a solution of
associating polymers [6]. Elastic media are expected to
be invaded by fracture, rather than a displacement, and
indeed the growth patterns reported in the experiments
had features akin to fracture patterns in brittle materials;
see Fig. 1. Detailed comparisons with theory were lack-
ing, however, since an appropriate analytic theory did not
exist. As is well known (and see below for details), in
fracture the relevant equation to solve is the bi-Laplace
equation V2V2y = 0 with appropriate boundary condi-
tions [7]. The general solution is no longer the real part of
an analytic function, but rather

x(z,Z) = Re[z¢p(2) + $(2)], (1

where ¢(z) and §(z) are a pair of analytic functions. Thus
conformal techniques are not trivially applicable, and
until recently there was no appropriate theoretical method
to solve such equations with boundary conditions on an
arbitrary ramified boundary. Numerical simulations were
limited to lattice discretizations [8], even though lattice
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anisotropy is a relevant perturbation changing the uni-
versality class of the growing patterns. Recent progress
in the context of quasistatic fracture [9,10] allows us to
offer below an appropriate model for bi-Laplacian growth
patterns.

To set up the model imagine a two-dimensional elastic
medium with a hole of an arbitrary shape, whose bound-
ary z(s) is parametrized by the arc-length variable s. Into
this hole one pushes quasistatically a fluid of pressure P.
In equilibrium with this pressure the elastic medium will
suffer a displacement field u(r). The strain tensor €
which results is

ij = %(a]l/tk + 8ku,) (2)

In linear elasticity theory [7] the stress tensor is related to
the strain tensor by

E o
Ojk = m(”]’k + Sjkmzl: ”11), 3)

where E and o are material parameters. Equilibrium in-
side the elastic medium requires that

Z(?kajk = 0,
k

The general solution of these equations in two dimensions
is given by

for all j. 4

T = 03X, Ty = 03X Oy = ~x, ()

FIG. 1. Typical pattern when water is injected into a radial
Hele-Shaw cell filled with a solution of associated polymers [6].
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where the so-called Airy potential y fulfills the bihar-
monic equation

V2V2y = 0. (6)

The solution is represented, as said, by Eq. (1). In order to
develop the growth pattern we need to compute the tan-
gent component of the stress tensor at the boundary of the
pattern, since cracking proceeds only if this component
exceeds a threshold o .. To define this component and to
state the conditions on the boundary of the growth pattern
we use the local tangent and normal directions. With «
being the angle between the tangent and the x axis at z(s),
we define derivatives with respect to the tangent and
normal directions according to

d, = cos(a)d, + sin(a)d,, d, = cos(a)d, — sin(a)d,.

(M

The pressure P now must be balanced by the normal
component of the stress:

duxX = 0,, = —P = const ¢}

on the crack. Since in equilibrium no fluid slips along the
boundary,

- am/\/ =0y, = Opr = 0 (9)

on the crack. The normal component d,,y = o, is not
determined from the boundary conditions, but is com-
puted by solving for x(z,z). Using the fact that
40°x/9z20z = oy + 0y, = 0, + 0,,, We can immedi-
ately read from Eq. (1)

0,4(z) = P+ 4Re[¢'(2)], (10)

at the boundary. Once we have computed the tangent
component of the stress, we may advance the crack if
Ao = 0,(z) — o, > 0, at a speed which is (on the aver-
age) proportional to Ao [11,12].

Thus to compute the tangent stress and advance the
crack we need to determine only the function ¢(z). The
boundary conditions (8) and (9) are expressed in terms of
¢(z) and §(z) by using (7) in (8) and (9) to derive
9,0; x = —P[cos(a) + isin(a)] = —Pd,z(s), where we
identify 9,z(s) as the unit vector tangent to the boundary.
Rewriting this condition as 9,[d; ¥ + Pz] = 0, we obtain
the boundary condition on the interface [13]

P(2(s)) + z(s)P'(2(s)) + Pla(s)) = —Pz(s) + K, (11)

where ¢(z) = §/(z) and K is a constant that can be chosen
zero with impunity.

The boundary conditions at infinity are obvious, since
all stress components have to vanish as z — oo:

9,:x(2,2) =0, d,.x(z,Z2)—0  asz— 0. (12)

In light of these conditions ¢(z) must have the form
¢(2) =Bz + X2 gu_;z7/ with B real. The solution
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of the stress field is invariant under the transformation
¢ — ¢ + iAz + B with A real and B a complex constant.
We can use this freedom to get rid of 8, and u, and write
¢ in the form

b)) =D u_jz. (13)
j=1
Similarly from (12) it follows that ¢ has the form
Pl(2) =D vz (14)
j=1

To proceed, invoke a conformal map z = ®)(w) that
maps the exterior of the unit circle in the mathematical
plane w to the exterior of the crack in the physical plane z,
after n growth steps. The conformal map is univalent by
construction, with a Laurent expansion

O (w) = F(ln)w + F(()") + F(,"i/a) + F(,"%/a)2 + ...
(15)

and ®©(w) = w. The arclength position s in the physical
domain is mapped by the inverse of ®" onto a position
on the unit circle € = exp(if). We will be able to compute
the stress tensor on the boundary of the crack in the
physical domain by performing the calculation on the
unit circle. In other words we will compute o,(6) on
the unit circle in the mathematical plane.

We perform the calculation iteratively, taking the stress
as known for the crack after n — 1 fracture events. In
order to implement the nth cracking event with average
velocity proportional to Ao, we should choose potential
positions on the interface more often when Ao(6) is
larger. We construct a probability density P(6) on the
unit circle '’ which satisfies

|~ V()| A (8)O(Aa(6))

P(6) = J37 | @/ (i) A (8) O(A o (8))dB

(16)

where O[Ao(f)] is the Heaviside function, and
|®""=1(¢i)] is simply the Jacobian of the transformation
from mathematical to physical plane. The next growth
position, 6, in the mathematical plane, is chosen ran-
domly with respect to the probability P(6)d6f. At the
chosen position on the crack, ie., z = ®" V(ei), we
want to advance the crack with a given step of fixed
length \/A;. We achieve growth with an auxiliary con-
formal map ¢, 4 (@) that maps the unit circle to a unit
circle with a semicircular bump of area A, centered at /%
[14,15]. To ensure a fixed size step in the physical domain
we choose

Ao

)‘” = |q)(n—1)/(ei0n)|2 :

A7)
Finally the updated conformal map ®™ is obtained as
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O (w) = D" V(e 4 (»)). (18)

The recursive dynamics can be represented as itera-
tions of the map ¢, 4 (W),

DM (w) = D0, oy g, (@) (19)

Every given fracture pattern is determined completely by
the random itinerary {6}/,

We can now represent the boundary conditions (10) in
terms of z(s) = ®"(e):

@' (CD (¢))

/(e

N IVALERE

(@ (€)) + D(e) + (D" (e)) = —PD"(e).

(20)

To solve this equation we introduce a power expansion for
the ratio

= > be. (1)

Note that this expansion contains both positive and nega-
tive powers of €, whereas Eqs. (13) and (14) contained
only negative powers. Nevertheless, upon substituting all
the power expansions into Eq. (20), one finds that the
determination of the function ¢(z) requires only the
negative powers of € [10], with the coefficients satisfying
the system of equations

MS

U—;— ]M—]b G+i+1) = pF—l' (22)

1

-
I

After separating real from imaginary parts, one finds an
infinite system of linear equations. In practice we truncate
at jn.x = 100 and test for convergence by increasing the
order. Note that the highest resolved u;  requires com-
puting the Fourier series (21) to order 2 Jmax T 1.

Implementing this procedure with ®©(w) = w, and
choosing Ay = 1, we generate a typical fracture pattern
as seen in Fig. 2. What is seen is the map ®7%0)(¢)
which is topologically a circle. The pattern is self-similar
throughout the growth, and contrary to the discretized
solution of Ref. [8] we have no lattice and no finite
boundaries. Accordingly, there are no boundary induced
crossovers of the type found there.

While we can guarantee that the pattern seen is indeed
an exact bi-Laplacian pattern under the growth rules
adopted here, we cannot guarantee that it is identical to
any of the experimental patterns reported in [4—6]. This
stems from a few reasons. First, in many experiments
there is a mixture of viscous and elastic phenomena, to
the point that there are examples of a continuum of
growth patterns depending on the relative importance of
the two [5,6]. In our theory we solved the bi-Laplacian
equation after each growth step; this is relevant in the
purely elastic limit. Second, and not less importantly, we
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FIG. 2. Typical pattern resulting from a growth of discrete
fracture events occurring with the probability P = @(Ao)Ac.

advanced the pattern where allowed (Ao > 0) at a veloc-
ity that is proportional (on the average) to Ao. While this
is accepted by a number of authors as a reasonable guess
for the rate of growth of a fracture pattern in the quasi-
static limit, it is by no means derived from first principles
or universally accepted. Needless to say, in our procedure
we can adopt any other velocity law without much ado,
simply by changing the probability distribution (16). We
caution the reader that one does not expect the patterns to
be independent of the velocity law [10]. Thus a more
complete theory of bi-Laplacian patterns calls for further
collaboration between experiments and theory to zero in
on a plausible velocity law. Before doing so there is a
limited relevance to studying carefully the geometric
properties of the patterns obtained with this velocity
law or another. Notwithstanding these remarks, we stress
that the present theory offers a very convenient tool for
assessing the fractal dimension D of the growing pat-
terns. Having a univalent conformal map as in (15), one
can invoke the rigorous ‘“1/4” theorem. This theorem
states that if R, is the radius of the minimal circle that
contains the pattern after n fracture events, then

F\" < R, = 4F". (23)

Accordingly, one expects that for large n the first Laurent
coefficient satisfies

F = \[Agn'/P. (24)

One advantage of the present approach is that the first
Laurent coefficient E") is known exactly as

F =T1_ T+ A, (25)

which is computable to machine precmon In Fig. 3 we
present, in double logarithmic plot, F / JAy vs n.
Reading the slope of the least-squares fit ylelds a dimen-
sion D = 1.4 = 0.1.
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FIG. 3. FE”)/\//\—O of the pattern in Fig. 2 vs n in a double
logarithmic plot. From the slope of the least squares fit we
estimate the dimension D = 1.4 = 0.1.

The method of iterated conformal maps offers conver-
gent calculations of fractal and multifractal properties of
the growth patterns. If required, one can use the formal-
ism to obtain highly accurate values of the fractal dimen-
sion; cf. [16]. In addition, if the properties of the growth
probabilities are of interest from the multifractal point of
view, there are available methods to compute these in a
convergent scheme [17] that is not available in direct
numerical simulations. However, such refinements would
be justified only after future work to solidify further the
relation between theory and experiment.
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