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The effect of rainfall changes on economic 
production

Maximilian Kotz1,2, Anders Levermann1,2,3 & Leonie Wenz1,4 ✉

Macro-economic assessments of climate impacts lack an analysis of the distribution 
of daily rainfall, which can resolve both complex societal impact channels and 
anthropogenically forced changes1–6. Here, using a global panel of subnational 
economic output for 1,554 regions worldwide over the past 40 years, we show that 
economic growth rates are reduced by increases in the number of wet days and in 
extreme daily rainfall, in addition to responding nonlinearly to the total annual and to 
the standardized monthly deviations of rainfall. Furthermore, high-income nations 
and the services and manufacturing sectors are most strongly hindered by both 
measures of daily rainfall, complementing previous work that emphasized the 
beneficial effects of additional total annual rainfall in low-income, agriculturally 
dependent economies4,7. By assessing the distribution of rainfall at multiple 
timescales and the effects on different sectors, we uncover channels through which 
climatic conditions can affect the economy. These results suggest that anthropogenic 
intensification of daily rainfall extremes8–10 will have negative global economic 
consequences that require further assessment by those who wish to evaluate the costs 
of anthropogenic climate change.

Considerable changes to Earth’s hydrological cycle are anticipated owing 
to anthropogenic climate change. The resulting effects on rainfall are  
heterogeneous across a variety of timescales and characteristics, reflect-
ing the complex physical processes that underlie them. For example, 
daily rainfall extremes have increased globally8,9 owing to the relation-
ship between atmospheric water vapour content and temperature10. 
Conversely, seasonal and annual averages are changing heterogeneously, 
with both regional wetting and drying, largely as a result of dynamical 
changes in the atmospheric circulation11–13. Considering variability14 and 
seasonality15 adds further nuance to the anticipated response of rainfall 
to anthropogenic influence. Quantifying the costs of these complex 
changes remains an important barrier to a comprehensive assessment of 
the costs of climate change, particularly as rainfall has extensive potential 
for societal impacts. Alterations to water availability can subsequently 
affect agricultural productivity16,17, metropolitan labour outcomes17,18 
and the onset of conflict17,19; in addition to which flash flooding can cause 
extensive damages20 and economic disruption21.

In contrast to this micro-level evidence, most macro-economic 
assessments of the costs of climate change have found precipita-
tion changes to affect economic growth rates insignificantly1–3. 
Two recent studies have provided some reconciliation, identifying 
macro-economic effects of rainfall when using a higher spatial resolu-
tion4,5. However, these studies have not assessed rainfall at the range of 
timescales necessary to capture either the variety of societal impact 
channels or the complex physical changes resulting from anthropo-
genic forcing. By focusing on annual totals1–4 and monthly means5, 
recent findings are unlikely to realistically capture future costs. This 
problem is exacerbated by the fact that fundamental elements of the 

economy are known to respond to daily realizations of weather vari-
ables2, meaning that higher-order moments of the distribution of daily 
rainfall may be important determinants of economic growth rates, as 
has been shown for the variability of daily temperature6.

To address these issues, we assess higher-order moments of the 
annual distribution of daily rainfall in conjunction with subnational eco-
nomic output. The distribution of daily rainfall is highly non-Gaussian 
(Fig. 1) and we therefore take a threshold approach. We count both the 
number of days and the amount of rainfall on days falling above a wide 
range of critical thresholds to flexibly identify different possible impact 
channels. Thresholds are set either as constants or as percentiles of the 
historical distribution (1979–2019) of local daily rainfall (Methods).  
The second approach allows us to implicitly account for local adaptation 
to prevailing rainfall conditions. Furthermore, we calculate the total 
annual rainfall and standardized monthly rainfall anomalies to assess 
the results of previous studies and their relation to the daily measures 
introduced here (see Extended Data Fig. 1 for maps of the principal 
rainfall measures considered). Standardized monthly rainfall anoma-
lies constitute an annual sum of monthly rainfall anomalies from their 
climatological means, weighted by their historical contribution to the 
annual rainfall, as defined in ref. 5 and shown in equation (4) in Methods. 
Our primary source of climate data is the surface precipitation rate from 
the European Centre for Medium-Range Weather Forecasts Reanalysis 
5 (ERA-5) of historical observations, owing to its global coverage, high 
spatial and temporal resolution, and high-degree of correlation with 
ground-based measurements of rainfall at the daily timescale22.

We combine these rainfall measures with data on subnational eco-
nomic production from 1,554 regions across 77 countries3 resulting 
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in over 30,000 observations over the past 40 years (see Methods for 
details). Using data at the subnational level allows for a more detailed 
spatial description of both climate and economic variables, which has 
been shown to help identify impacts in economic data3–5. This is par-
ticularly crucial for assessments of rainfall, for which spatial variability 
is considerably larger than for temperature4. We explicitly evaluate 
the spatial autocorrelation of these rainfall measures (Supplemen-
tary Fig. 1) at the subnational level of our economic data, the results of 
which suggest that the level of spatial detail used here is appropriate to 
address the problem of spatial aggregation (Supplementary Section 1). 
We then apply fixed-effects panel regression models to estimate the 
effect of these aspects of the distribution of daily rainfall on economic 
production. This approach uses within-region changes in climate vari-
ables from one year to the next to assess their impact on economic 
outcomes. As such, it allows us to account for unobserved differences 
between regions, contemporaneous global shocks and regional time 
trends (Methods), strengthening the identification of causal effects 
between changes in rainfall and economic production.

Main findings
Assessing the distribution of daily rainfall across a range of thresh-
olds, we identify four distinct effects on economic production. Con-
firming previous studies, we identify quadratic effects of both total 
annual rainfall4 and monthly rainfall deviations5 on economic growth 
rates. Greater annual rainfall benefits economic growth, but these 
benefits diminish with greater climatological rainfall totals (Fig. 2a, 
Extended Data Table 1). This is consistent with the interpretation of net 
water supply as an economic good23 with diminishing marginal utility.  
Furthermore, economic growth rates are strongly concave with monthly 
rainfall deviations (Fig. 2b, Extended Data Table 1), such that negative 
rainfall shocks away from historical monthly means cause strong and 
significant losses. The response to positive rainfall shocks is weaker 
and less statistically significant, consistent with previous assessments5. 
This suggests that economies are adapted to their prevailing rainfall 

conditions at the monthly timescale, and that drought away from these 
norms is inherently damaging. To the best of our knowledge, our results 
provide the first confirmation of this effect at the global scale.

Importantly, we identify two further effects of rainfall that have previ-
ously been unaccounted for. First, we find that increases in the number of 
days with rainfall exceeding 1 mm result in strong reductions in growth 
rates (Fig. 2c, Extended Data Table 1), with similar but less statistically sig-
nificant results for thresholds between 0.1 mm and 3 mm (Supplementary 
Table 1). This suggests that days with any considerable amount of rainfall 
constitute suboptimal economic conditions, and we refer to this measure 
as the number of wet days from hereon. We note that the marginal effect 
from an increase in the number of wet days is smaller in regions where the 
number is already higher (Fig. 2c, Extended Data Table 1), which suggests 
adaptation based on prolonged exposure to wet days.

Second, we find that increases in extreme daily rainfall cause fur-
ther reductions in growth rates (Fig. 2d, Extended Data Table 1), where 
extreme daily rainfall is measured as the annual sum of rainfall on days 
exceeding the 99.9th percentile of the historical distribution (1979–2019)  
(see equation (2) in Methods). This suggests that increases in both 
the number and severity of extreme rainfall days within a given year 
reduce economic productivity. This response is also identifiable with 
larger standard errors using either lower percentiles of the historical 
distribution (95th and 99th (Supplementary Table 2, Supplementary 
Fig. 2)) or absolute thresholds at similar magnitudes (Supplementary 
Table 3). The improved precision using percentile-based measures sug-
gests the presence of regional adaptation to heavy rainfall conditions. 
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Fig. 1 | Assessing the distribution of daily rainfall via thresholds. a, b, The 
distribution of daily rainfall from grid cells in Austria (a) and Vietnam (b) differs 
considerably, despite similar average annual totals (data are from the ERA-5 
reanalysis of historical observations). The 99th and 99.9th percentiles of the 
historical distribution (1979–2019), as used to calculate extreme daily rainfall, 
are denoted by the vertical red lines. c, The spatial distribution of the 99.9th 
percentile of daily rainfall. The two locations are marked with a red plus and 
cross, respectively.
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Fig. 2 | The effect of four rainfall measures on economic growth rates. a, The 
marginal effects of a 1-s.d. increase in the total annual rainfall, as a function of 
total annual rainfall. b, The effects of standardized monthly deviations of 
rainfall (an annual sum of anomalies of monthly rainfall from their 
climatological means, weighted by their historical contribution to the total 
annual rainfall; see equation (4) in Methods). c, The marginal effects of a 1-s.d. 
increase in the number of wet days, as a function of the number of wet days.  
d, The marginal effects of a 1-s.d. increase in extreme daily rainfall (the annual 
sum of rainfall on days exceeding the 99.9th percentile of the historical 
distribution (1979–2019)), as a function of the annual mean temperature. The 
95% confidence intervals are shown in red, having clustered standard errors by 
region. The main regression supporting these results includes 30,121 
observations (see Extended Data Table 1 for further details). The distributions 
of observations of the moderating variable are shown as blue histograms.
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Furthermore, the marginal effects of increases in extreme daily rainfall 
show a regional heterogeneity that is best described by the annual mean 
temperature (this heterogeneity may also be described less precisely 
by either latitude or the seasonal temperature difference, see Supple-
mentary Table 4). This implies further regional adaptation, although 
through a mechanism that is less clear.

These effects from rainfall are separately identifiable when included 
as competing independent variables on economic growth rates (see 
equation (5) in Methods), suggesting that they constitute independ-
ent, additive effects. We explore the extent of this independence by 
sequentially excluding certain measures (Supplementary Table 5) 
and assessing each measure individually (Supplementary Table 6).  
The effect of the annual total is increased to some extent by the exclu-
sion of the monthly deviations, and the monthly deviations are skewed 
more positively with the exclusion of the annual total (Supplementary 
Table 5). This suggests that to some degree they are competing, interde-
pendent measures that capture the same effects on economic growth 
rates. Conversely, the effects of the daily measures are decreased by the 
exclusion of the annual and monthly measures, and vice versa (Supple-
mentary Table 5). This suggests that they are complementary measures, 
which although partially colinear, assist one another in identifying their 
separate effects on economic growth rates. Other than the annual total, 
all measures remain strongly significant when assessed individually, 
albeit with marginally reduced effect sizes (Supplementary Table 6). 
However, the inclusion of all measures improves the description of our 
statistical model (within-region R2 of 0.014 rather than of about 0.009, 

see Supplementary Table 6) and we therefore continue to include them 
in our preferred specification. Moreover, these effects of rainfall are 
identified while accounting for the effects of temperature as found in 
previous studies3,6 (Extended Data Table 1), and additionally for daily 
temperature extremes (Supplementary Table 7) and standardized 
monthly temperature deviations (Supplementary Table 8), which sug-
gests that they constitute additional effects.

These findings complement previous narratives by showing that 
although greater rainfall may be beneficial4, this is only true if it does 
not also cause increases in the number of wet days or in the extent of 
extreme daily rainfall. We encourage the use of these additional measures 
in further assessments of the economic effects of rainfall, as they may 
resolve contradictory findings from country-level studies that show both 
benefits and losses when assessing rainfall only through annual totals24,25. 
Moreover, measures of extreme daily rainfall may also provide helpful 
insights for assessments of the direct impact of fluvial floods on eco-
nomic growth which, so far, have come to contradictory conclusions26,27.

Robustness, seasonality and persistence
We conduct a number of robustness tests of these main results, which are 
presented in Supplementary Section 2. The results are recovered consist-
ently when accounting for different levels of spatial autocorrelation in 
rainfall measures (Supplementary Fig. 1, Extended Data Table 1), across 
two alternative precipitation datasets (Supplementary Tables 9, 10),  
when aggregating climate data by use of population weights rather 
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Fig. 3 | Regional estimates of the historical effect on economic growth rates 
of a 1-s.d. shock in each of the four rainfall measures. These estimates are 
obtained via the product of the region-specific marginal effects and the 
region-specific standard deviation for each rainfall measure (from annual 
variability over the historical period 1979–2019; see Extended Data Fig. 2 and 
Methods for details). Note that for all rainfall measures except the monthly 
deviations, the magnitudes of a positive or negative 1-s.d. shock are equivalent 

but of opposite sign. As such, shocks constitute a 1-s.d. increase in each 
measure, other than for the monthly deviations in which a 1-s.d. decrease is 
shown (see Supplementary Fig. 5 for the impact of a positive shock of monthly 
rainfall deviations). The hatching indicates regions outside of our sample of 
economic data; here historical effects have been extrapolated using historical 
climate data and the estimated marginal effects. Global and sample means of 
impacts across regions are given in each panel.
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than by area (Supplementary Table 11) and when accounting for linear 
or quadratic region-specific time trends (Supplementary Table 12).

Given the strong seasonal characteristics of rainfall, we further stratify 
our assessment of the number of wet days and extreme daily rainfall by 
season. The effects of both measures are strongest in winter and autumn, 
showing little response in summer and spring. This seasonal heteroge-
neity is robustly identified when using either annual (Supplementary 
Table 13) or season-specific (Supplementary Table 14) thresholds, when 
explicitly accounting for snowfall (Supplementary Table 15, Supplemen-
tary Fig. 3), and despite greater daily rainfall (both extremes and number 
of wet days) in summer than winter across most of the global land mass 
(Supplementary Fig. 4). These results suggest that the effect arises due to 
a seasonal economic vulnerability rather than owing to differing seasonal 
characteristics of rainfall (see Supplementary Section 3 for further dis-
cussion). Moreover, it is consistent with the already identified modulat-
ing effect of annual mean temperature on the impact of extreme rainfall 
(Fig. 2d) such that both hotter seasons and years reduce vulnerability. 
Further research into the mechanisms behind this pattern may provide 
insights into adaptation planning against the effects of extreme rainfall.

The persistence of climate impacts on economic growth is a strong 
determinant of long-term damages with important implications for 
optimal climate policy1–3,28,29. Following the literature1–3, we assess the 

presence of persistent or rebound effects in the impact of the rainfall 
measures introduced here using a distributed lag model. We find no 
evidence for rebound effects in the short term, instead identifying 
some persistence in the effect of the annual total and number of wet 
days (Supplementary Table 16).

Spatial heterogeneity
To assess the spatial heterogeneity in the magnitude of historical impacts 
from these aspects of the distribution of rainfall, we multiply regional esti-
mates of the marginal effects with the historical standard deviation of each 
measure (from annual variability over the historical period, 1979–2019; 
Methods, Fig. 3). Using the identified marginal effects and historical climate 
data, we are able to extrapolate these estimates out of our economic sample 
(results for these regions are hatched in Fig. 3). Economic impacts in the his-
torical period have been largest from the number of wet days and negative 
monthly rainfall deviations. These impacts have also been fairly balanced 
across regions within the economic sample but show the smallest values 
for the number of wet days in desert regions where interannual variability 
is low (Extended Data Fig. 2). Conversely, impacts from the total annual and 
extreme daily rainfall have been smaller and show greater regional hetero-
geneity. On the one hand, effects from the total annual rainfall have been 
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strongest at low latitudes and across coastal regions where interannual vari-
ability is large (Extended Data Fig. 2). On the other hand, effects from extreme 
daily rainfall have been strongest at higher latitudes and across coastal and 
mountainous regions, resulting in large impacts in key industrial regions 
such as the coastal United States, central Europe, China, Korea and Japan.

Sectoral and income heterogeneity
To shed light on the impact channels associated with these measures, 
we re-assess their effects separately on sectoral economic output and on 
the above- and below-median national income countries of our dataset 
(hereon referred to as rich and poor; see Methods for details on the par-
titioning of the data by income) (Fig. 4). Owing to the interdependence 
between the effects of the annual total and the monthly rainfall devia-
tions, we assess their effects separately (the results of the daily measures 
are still estimated with the inclusion of all other rainfall measures).

In their response to deviations of monthly rainfall, rich and poor 
countries are similar (Fig. 4a, Extended Data Fig. 3b). However, poor 
countries show greater sensitivity to the annual total rainfall (+62%, 
with respect to the other income group), whereas rich countries show 
greater sensitivity to the number of wet days (+47%) and a much more 
statistically significant response to extreme daily rainfall (Fig. 4a, 
Extended Data Fig. 3c, d). Interestingly, agricultural output shows little 
to no response to both measures of daily rainfall, whereas the services 
and manufacturing sectors respond to these measures strongly (Fig. 4b, 
Extended Data Fig. 4). This offers a possible explanation for the greater 
sensitivity of rich nations to daily rainfall, given their smaller depend-
ence on agriculture and greater dependence on services (Fig. 4c–e)30. 
Agricultural output shows little dependence on the total annual rainfall 
in our assessment, showing only a strong negative response to both 
negative and positive rainfall shocks at the monthly timescale (Fig. 4b, 
Extended Data Fig. 4). However, price effects may mask some of the 
response of agriculture when assessed using monetary output instead 
of physical measures of agricultural output such as net primary produc-
tion17. The manufacturing and services sectors by contrast show strong 
responses to rainfall across all timescales and measures.

In addition to these heterogeneous effects, the economic response to 
changes in the number of wet days shows a strong, nonlinear depend-
ence on the regional income level when accounted for as an interaction 
term in the regression model (Methods, Supplementary Table 17, Sup-
plementary Fig. 6). This suggests a more complex pattern of adaptation 
to impacts from the changing number of wet days. Accounting for such 
dependence considerably improves the description of the statistical 
model (R2, Supplementary Table 17) and does not alter the conclusions 
drawn in Fig. 4 (see caption of Supplementary Fig. 6).

Concluding remarks
These results demonstrate that focusing on the beneficial effects of 
greater annual rainfall for agriculturally dependent low-income coun-
tries alone4,7 provides an incomplete picture of the economic effects of 
rainfall changes. Increases in extreme daily rainfall and the number of 
wet days are adverse for economic growth, particularly in high-income 
countries and via the manufacturing and services sectors.

The most robust prediction of future rainfall change under anthro-
pogenic climate change is the intensification of daily rainfall extremes 
across the globe8–10. The identification of an adverse effect on economic 
growth rates from this aspect of the distribution of rainfall is therefore a 
crucial step towards assessing the costs of anthropogenic climate change. 
Our results suggest that accounting for this aspect will raise estimates of 
these costs compared with previous work2,3,28,29. Considerable changes are 
also projected from global climate models for the other aspects of rainfall 
but are likely to be regionally heterogeneous and are subject to greater 
uncertainty12,13. Our results suggest that these changes would cause further 
regional economic losses and gains that are at present difficult to quantify. 

In the historical period, effects from these aspects of the distribution of 
rainfall have been larger than those of extreme daily rainfall. Further work 
is therefore required to quantify the economic consequences of future 
changes in rainfall, comprehensively accounting for both the magnitude 
and uncertainty of impacts from all the channels identified here.
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Methods

Climate data
We use the surface precipitation rate and the 2-m air temperature 
from the ERA-5 reanalysis of historical observations as our primary 
climate data. The ERA-5 combines satellite and in situ observations 
with state-of-the-art assimilation and modelling techniques to provide 
estimates of climate variables with global coverage and at six-hourly 
resolution. Data are obtained at the daily timescale and on a regular 
0.25° × 0.25° grid for the years 1979–2019. In addition, we use the surface 
precipitation rate from the Multi-Source Weighted-Ensemble Precipita-
tion v.1.2 (MSWEP31,) at the same temporal and spatial resolution and for 
the same years, and the Princeton Global Meteorological Forcing data-
set (PGF32,) at a daily timescale on a regular grid of resolution 0.5° × 0.5° 
for the years 1948–2016. The MSWEP combines precipitation data from 
a variety of sources (including multiple reanalyses, and satellite and 
ground-based observations) as a function of timescale and location. 
The PGF applies bias correction and forcing based on observational 
data to the National Centers for Environmental Prediction/National 
Center for Atmospheric Research (NCEP/NCAR) reanalysis of histori-
cal observations.

Economic data
Subnational economic data on macro-economic output per capita are 
obtained from DoSE —the Database of Subnational Economic output 
made publicly available by the Mercator Research Institute on Global 
Commons and Climate Change (MCC) and the Potsdam Institute for  
Climate Impact Research (PIK)3,33. The dataset has been introduced 
by ref. 3 and comprises annual gross regional product from 1,554  
subnational regions across 77 countries with varying temporal coverage  
from 1901 to 2014. The data have been assembled from various sources, 
such as statistical agencies of central and federal governments as well 
as yearbooks. Values in local currencies have been converted to US 
dollars by means of exchange rates from the FRED database of the  
Federal Reserve Bank of St Louis to avoid diverging national inflationary 
tendencies. Following previous literature1–6, subnational per-capita 
growth rates are estimated as the first difference of the logarithm of 
gross regional product per capita.

Climate measures
We calculate multiple measures of the annual distribution of daily 
rainfall at the grid-cell level. These include annual and monthly totals, 
and measures in relation to a number of critical thresholds. Critical 
thresholds are set at a 0.1, 0.3, 1, 3, 10, 20, 30, 50, 70, 80 and 90 mm d−1, 
or at the 50th, 70th, 80th, 90th, 95th, 99th and 99.9th percentiles of 
the historical (1979–2019) distribution of daily rainfall at the grid-cell 
level. We use the entire historical distribution to define the 
percentile-based thresholds given the importance of doing so for accu-
rate assessment of extreme values34. The number of days, RDx,y, and 
the annual sum of rainfall on days exceeding these values, RD̂x y, , are 
calculated for a given year, y, and for each threshold, RC, according to:

∑R H R RRD( ) = ( − ), (1)x y
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x dC ,
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d

D
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where Rx,d, is the rainfall on grid cell x and day d, Dy is the number of 
days in a given year and H is the Heaviside step function. This results 
in a total of 36 different threshold measures of the annual distribution 
of daily rainfall. The number of wet days, and the measure of extreme 
daily rainfall, for which we identify significant economic effects are 

denoted as RD(1 mm)x,y and RD̂ (99.9%)x,y respectively, using the above 
notation. Designed in this way, the second measure captures both the 
frequency and intensity of extreme exceedance, both of which are 
important under climate change8–10,35.

As additional control variables, we calculate annual mean tempera-
ture, T , and day-to-day temperature variability, 

∼
T , as defined in ref. 7

∑ ∑T
D

T T=
1

12
1

( − ) , (3)x y
m m d

D

x d m y x m y,
=1

12

=1
, , , , ,

2
m∼

where Tx,d,m,y is the temperature on grid cell x of day d of month m of 
year y, Dm is the number of days in a given month and Tx m y, , is the year 
and grid-cell specific monthly mean temperature.

Spatial aggregation
Grid-cell values of the annual and monthly totals, and the annual 
threshold measures are aggregated to the regional level using an 
area-weighted mean of grid cells that fall at least partially within the 
administrative boundaries, obtained from the Database of Global 
Administrative Areas (GADM). Weights are calculated using an algo-
rithm that estimates the proportion of each grid cell falling at least par-
tially inside the administrative boundary. In an alternative specification, 
a population-weighted mean is used for aggregation, using population 
data from Hyde 3.1, the History database of the Global Environment36 
(the results of which are shown in Supplementary Table 11).

Standardized monthly rainfall deviations
Regional, r, monthly, m, rainfall totals, Rr,m,y are used to calculate an 
annual measure of standardized monthly rainfall deviations, RMr,y as 
described in ref. 5 and as shown below:
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where Rr m,  is the historical mean, and σr,m is the historical standard 
deviation, of monthly rainfall totals in that region and RAr  is the his-
torical mean of annual rainfall totals in that region. This measure rep-
resents an annual sum of monthly rainfall anomalies from their 
climatological means, weighted by the climatological contribution of 
monthly rainfall to the annual rainfall. This may be of particular inter-
est in the context of increasing precipitation volatility at monthly to 
annual timescales37.

Econometric models
We use fixed-effects panel regression models to estimate relationships 
between changes in annual climate measures, and subnational per-capita 
growth rates, gr,y. In our baseline estimations, we include regional, μ ,r
and yearly, ηy

, fixed effects. The first flexibly accounts for unobserved, 
time-invariant differences between regions such as differing mean cli-
mate regimes and different baseline growth rates owing to geopolitical 
and historical factors. The second flexibly accounts for unobserved, 
spatially invariant annual shocks to both climate measures and economic 
growth rates owing to global phenomena such as the El Niño–Southern 
Oscillation or global economic recessions or pandemics. In additional 
specifications, we include region-specific linear, kry, or quadratic, 
k y γ y+r r

2 time trends (with region-specific slopes, kr and γr), to exclude 
the possibility of spurious correlations due to common time trends  
(the results of which are shown in Supplementary Table 12).

As independent variables, we include annual total rainfall, RAr,y, and 
monthly rainfall deviations, RMr,y quadratically, following the findings 
of previous studies4,5. We then separately include each of the 36 thresh-
old measures of the distribution of daily rainfall. We identify statistically 
significant effects from two measures: the number of wet days RD(1 mm)x,y 
and the measure of extreme daily rainfall RD̂(99.9%)x,y. We note a quad-
ratic effect of the number of wet days, and a dependence of the effect of 



extreme daily rainfall on the annual mean temperature, such that the 
main econometric specification reads:

∼
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with regression coefficients, αi, and region year error, ε .r y,  As additional 
controls, we include day-to-day temperature variability, α Tr y9 ,

∼ , and the 
function of the annual mean temperature, F T α T( ) = ( −r y r y, 10 ,
T α T T T) + ( − ),r y r y r y r y, −1 11 , , , −1  specifiedin ref. 6 and ref. 3, respectively.  
By including all variables of interest in the same regression equation, 
we strengthen the interpretation of the effects as independent and 
additive38. When assessing heterogeneity of the effect of the number 
of wet days with income level, θr y,  (as in Supplementary Table 17, Sup-
plementary Fig. 6), we find that considering a nonlinear effect consid-
erably increases the statistical power of the model (R2, Supplementary 
Table 17) and therefore include the following additional terms in equa-
t i o n  ( 5 ) :  α θ α θ α θRD(1mm) + RD(1mm) + RD(1mm)r y r y r y r y r y r y11 , , 12 ,

2
, 13 , ,

2

α θ+ RD(1mm)r y r y14 ,
2

, .

Historical effect sizes and marginal effects
The regression coefficients (αx in equation (5)) describe the percentage- 
point effect on subnational growth rates of a one unit increase in each 
rainfall measure. Given the different magnitudes of each measure, the 
regression coefficients do not provide comparable estimates of the mag-
nitude of each effect. Therefore, to assess the magnitude of the historical 
effect sizes for the three non-standardized measures (RAr y, , RD(1mm)r y,  
and RD̂(99.9%)r y, ), we multiply the marginal effects by the within-region 
standard deviation (from interannual variability over the period 1979–
2019). In Figs. 2, 4, the sample average (either the global, or in Fig. 4a, the 
rich and poor, sample) of the within-region specific standard deviations 
are used, whereas in Fig. 3, region-specific values are used. The marginal 
effects of these measures are the first derivative of equation (5) with 
respect to the relevant measure, such that they read:

α αME = + 2 RA , (6)r yRA 1 2 ,

α αME = + 2 RD(1mm) , (7)r yRD(1mm) 5 6 ,

and

α α TME = + . (8)r yRD̂(99%) 7 8 ,

These marginal effects are evaluated at the sample (for Figs. 2, 4) or 
regional (for Fig. 3) mean of the moderating variable, before multiplica-
tion by the relevant within-region standard deviation.

Owing to its standardization, the monthly rainfall deviations are by 
definition zero mean and as such have a marginal effect close to zero 
at the regional mean. Consequently, we instead assess the average 
historical effect size of this measure by simply evaluating the relevant 
part of equation (5) (α αRM + RMr y r y3 , 4 ,

2 ) at one within-region standard 
deviation. The within-region standard deviations are taken either as 
the average across regions in the sample (for Figs.  2, 4) or the 
region-specific value (for Fig. 3).

Partitioning data by income
To assess the heterogeneity of the effect of rainfall by income, 
we re-assess our results separately for nations with above- and 
below-medium income per capita. Following ref. 6, we partition nations 
based on their per-capita income in the year in which we have best data 
coverage across regions (2008) or the year closest to this.

Data availability
The data on economic production and the ERA-5 climate data are both 
publicly available at https://doi.org/10.5281/zenodo.4681306 and 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5,  
respectively. Secondary data are available at the public repository for 
this publication: https://doi.org/10.5281/zenodo.5657457. The maps 
were created using Matplotlib v. 3.4.2 (https://matplotlib.org/), Cartopy 
v.0.18.0 (Met Office UK, https://pypi.python.org/pypi/Cartopy/0.18.0), 
Geopandas v. 0.6.1 (https://geopandas.org/) and GADM administra-
tive boundaries (https://gadm.org/). Source data are provided with 
this paper.

Code availability
The code to reproduce the analysis is available at the public repository 
for this publication: https://doi.org/10.5281/zenodo.5657457.
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Extended Data Fig. 1 | Historical means of the four principal rainfall 
measures. Maps of the historical (1979–2019) means of each annual rainfall 
measure. a, The annual total rainfall. b, The monthly rainfall deviations (a 
weighted annual sum of anomalies of monthly rainfall from their climatological 

means which are, by definition, zero mean). c, The number of wet days. d, The 
extreme daily rainfall measure (the annual sum of rainfall on days exceeding the 
99.9th percentile of the historical distribution).



Extended Data Fig. 2 | Historical variability of the four principal rainfall measures. Historical variability (the standard deviation of annual values over the 
years 1979–2019) for each measure of rainfall.
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Extended Data Fig. 3 | Rich and poor differentiated response of economic 
growth to changes in rainfall. As Fig. 2 but having estimated economic 
responses to rainfall for rich and poor countries separately.



Extended Data Fig. 4 | Response of sectoral growth to changes in rainfall. As 
Fig. 2 but having estimated economic responses to rainfall for the agricultural 
(“ag”), manufacturing (“man”) and services (“serv”) sectors separately.
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Extended Data Table 1 | Results of the main econometric specification for the effect of temperature and rainfall changes on 
economic growth rates

Numbers show the regression coefficients for the effect of each measure on growth rates, which constitute the %-point effect per unit increase in the given measure. Standard errors are shown 
below in parentheses. “T_var” and “T_mean” denote daily temperature variability and annual mean temperature, while the prefixes “D” and “L” denote the first difference and one-year lag of a 
variable.
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