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This paper summarizes results from ten global economy-energy-environment 
models implementing mechanisms of endogenous technological change (ETC). 
Climate policy goals represented as different CO

2
 stabilization levels are imposed, 

and the contribution of induced technological change (ITC) to meeting the goals 
is assessed. Findings indicate that climate policy induces additional technological 
change, in some models substantially. Its effect is a reduction of abatement costs in 
all participating models. The majority of models calculate abatement costs below 1 
percent of present value aggregate gross world product for the period 2000-2100. The 
models predict different dynamics for rising carbon costs, with some showing a decline 
in carbon costs towards the end of the century. There are a number of reasons for 
differences in results between models; however four major drivers of differences are 
identified. First, the extent of the necessary CO

2
 reduction which depends mainly on 

predicted baseline emissions, determines how much a model is challenged to comply 
with climate policy. Second, when climate policy can offset market distortions, some 
models show that not costs but benefits accrue from climate policy. Third, assumptions 
about long-term investment behavior, e.g. foresight of actors and number of available 
investment options, exert a major influence. Finally, whether and how options for 
carbon-free energy are implemented (backstop and end-of-the-pipe technologies) 
strongly affects both the mitigation strategy and the abatement costs. 
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1. inTRoDuCTion

The	Innovation	Modeling	Comparison	Project	(IMCP)	aims	to	look	at	
the	impact	of	induced	technological	change	(ITC)	on	the	economics	of	stabiliz-
ing	carbon	dioxide	emissions	at	different	levels.	The	IMCP	is	motivated	by	the	
conviction	that	endogenous	technological	change1	(ETC)	is	vital	in	modeling	eco-
nomic	dynamics	over	the	lengthy	time	scales	required	in	climate	policy	analysis.	
Despite	considerable	progress	in	ETC	research,	significant	discrepancies	among	
models	as	well	as	uncertainties	of	model	results	still	remain.	The	IMCP	advances	
the	understanding	of	ETC	by	assessing	 these	discrepancies	and	analyzing	 their	
potential	causes.	This	paper	summarizes	a	quantitative	model	comparison	experi-
ment	using	a	broad	range	of	relevant	models.	

Two	types	of	uncertainties	contribute	to	the	discrepancy	of	the	results	
from	different	models.	First,	there	is	parameter uncertainty,	referring	to	a	lack	
of	 empirical	 knowledge	 to	 calibrate	 the	parameters	of	 a	model	 to	 their	 “true”	
values.	Parameter	uncertainty	 implies	an	uncertainty	of	 the	predictions	of	any	
one	model	and	discrepancies	may	result	even	in	case	of	otherwise	very	similar	
models.	Parameter	uncertainty	is	addressed	in	model	specific	uncertainty	analy-
ses	including	sensitivity	analysis	and	parameter	studies,	and	modeling	teams	in	
the	 IMCP	were	encouraged	 to	explore	parameter	uncertainty	 in	 the	 individual	
papers	collected	in	this	special	issue.	Second,	there	is	structural	uncertainty	or	
model uncertainty,	defined	as	the	uncertainty	arising	from	having	more	than	one	
plausible	model	structure	(Morgan	and	Henrion	1990,	p.	67).	In	this	paper,	we	
address	model	uncertainty.

In	general,	model	uncertainty	may	be	reduced	by	eliminating	possible	
model	structures	from	the	set	of	plausible	models.	One	way	of	doing	so	is	validat-
ing	models	against	empirical	evidence	to	discriminate	“better”	models	and	con-
sequently	discard	“bad”	models.	However, even “perfect validation” provides noHowever,	even “perfect validation” provides no	“perfect	validation”	provides noprovides no	no	
proof	that	a	model	best	explains	reality.	Alternatively, “Ockham’s razor” proposesAlternatively,	“Ockham’s razor” proposes“Ockham’s razor” proposesOckham’s razor” proposes’s razor” proposess	razor” proposes” proposes	proposes	
that	if another model explains the same empirical phenomena using less specific	another	model	explains	the	same	empirical	phenomena	using	less	specific	
or	more	intuitive	assumptions	and	parameters,	then it can be deemed preferable.then	it can be deemed preferable.it	can be deemed preferable.can	be	deemed preferable.	preferable..	
Yet to this date, the theoretical and empirical foundation of technological change	to	this	date, the theoretical and empirical foundation of technological change,	the theoretical and empirical foundation of technological changethe	theoretical	and	empirical	foundation	of	technological	change	
within	economics	remains	insufficient	to	allow	for a sound evaluation of modelsfor	a sound evaluation of modelsa	sound	evaluation	of	models	
according	to	Ockham’s	razor.	In	other	words,	the	uncertainties	about	the	appropri-
ate	model	structure	remain.	

Our	 approach	 to	 model	 uncertainty	 involves	 identifying	 discrepancies	
in	results	of	different	models	running	the	same	scenarios,	and	investigating	their	
origins.	The	analysis	follows	four	steps:	First,	we	classify	the	models	according	to	
their	structure.	Second,	we	assess	discrepancies	in	a	central	model	output,	namely	
the	 impact	of	 climate	policy	on	 the	economy,	or	 the	“costs”	of	 climate	policy.	

1.	 We	distinguish	between	endogenous	and	induced technological	change:	Technological	change	
is	endogenous	(ETC)	 if	 its	 course	 is	 an	outcome	of	 economic	activity	within	 the	model.	Given	an	
endogenous	description,	 technological	 change	 in	policy	 scenarios	may	exceed	 (or	 fall	 short	of)	 its	
extent	in	the	baseline,	i.e.	policies	induce	additional	technological	change	which	we	refer	to	as	ITC.



Third,	we	analyze	the	different	model	dynamics	leading	to	the	discrepancies	us-
ing	aggregated	indicators	of	model	behavior	and	drawing	on	structural	informa-
tion	about	the	models.	We	measure	the	impact	of	technological	change	on	these	
quantitative	indicators,,	ceteris paribus.	Finally,	we	take	a	close	look	at	the	energy	
system	as	a	major	contributor	to	possible	climate	change.

The	objective	of	this	comparison	is improved understanding of how and	improved	understanding	of	how	and	
whether	technological	change	matters.	Technological	change	is	a	hotly	debated	
issue	because	its	impact	on	mitigation	costs	and	mitigation	strategies	has	political	
consequences.	Recently,	some	models	have	been	developed	incorporating	endog-
enous	technological	change.	Examples	of	the	papers	which	compare	these	models	
in a qualitative way are Sijm (2004), Clarke and Weyant (2002), Löschel (2002),	a qualitative way are Sijm (2004), Clarke and Weyant (2002), Löschel (2002),	qualitative	way	are	Sijm	(2004),	Clarke	and	Weyant	(2002),	Löschel	(2002),	
Weyant	and	Olavson	(1999),	Grubb,	Köhler	and	Anderson	(2002),	and	Köhler	et	
al.	(2006),	the	latter	includes	an	up	to	date	survey	of	ETC	in	the	literature.	

The	next	section	briefly	summarizes	the	literature	on	modeling	compari-
son;	in	the	third	section,	the	participating	models	are	characterized	and	a	taxon-
omy	of	models	is	provided.	Section	4	outlines	the	method	of	comparison	used	in	
the	IMCP.	In	Section	5,	we	analyze	the	impact	of	ITC	on	mitigation	costs,	mitiga-
tion	strategies,	and	energy	mix.	Section	6	offers	some	conclusions.

2. MoDEL CoMPARiSonS in THE LiTERATuRE

There	is	a	broad	literature	on	estimating	the	economic	impact	of	climate	
change	mitigation	policies	using	models	of	various	types.	The	Assessment	Reports	
of	the	Intergovernmental	Panel	on	Climate	Change	(IPCC)	provide	a	comprehensive	
overview	(IPCC	1996,	2001).	Moreover,	the	Second	and	Third	Assessment	Reports	
(SAR	and	TAR)	draw	conclusions	from	comparative	evaluations	of	these	modeling	
studies.	Among	 the	original	 studies	 of	model	 comparison,	 those	of	 the	Stanford	
Energy	Modeling	Forum	 (EMF)	 are	particularly	worth	mentioning.	This	 section	
briefly	summarizes	some	of	the	key	findings	of	previous	model	comparisons.

The	SAR	differentiates	top-down	(economic)	and	bottom-up	(engineer-
ing)	 models,	 further	 distinguishing	 Computable General Equilibrium	 models	
(CGE),	optimizing	models,	and	econometric	macroeconomic	models	among	the	
top-down	approaches.	Top-down	and	bottom-up	models	have	been	known	to	dif-
fer	greatly	in	their	estimates	of	the	costs	of	mitigation	policies.	The	authors	of	
SAR	note	that	this	classification	is	increasingly	misleading	as	efforts	are	being	
made	to	combine	features	from	macro	and	CGE	models,	and	to	incorporate	bot-
tom-up	technological	features	in	top-down	models.	Furthermore,	they	conclude	
that	different	assumptions	about	the	economic	reality	represented	in	the	models,	
e.g.	about	the	nature	of	market	barriers,	have	a	far	greater	impact	on	the	results	
than	 the	 type	of	 the	model.	 In	 their	extended	discussion	of	 results	 from	SAR,	
Hourcade	and	Robinson	(1996)	conclude	that	“there is no a-priori reason that 
the two modeling approaches will give different results. Whether they [bottom-up	
and	 top-down	models] do or not depends largely on their respective input as-
sumptions”.
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Two	Economics	Reports	of	the	PEW	Center	on	Global	Climate	Change	
summarize	 the	 economics	 of	 climate	 change	 policy	 and	 the	 role	 of	 technology	
(see	Weyant	2000,	Edmonds	et	al.	2000).	Both	studies	review	why	model	results	
differ.	Weyant	(2000)	attributes	the	differences	to	variations mainly in the baselinevariations mainly in the baseline	mainly	in	the	baseline	
emission	scenarios,	different	flexibilities	regarding where, when, and which GHGregarding	where, when, and which GHGwhere,	when,	and	which	GHG	
emissions	are	reduced,	and	whether	or	not	benefits	from	avoided	climate	change	
are	taken	into	account.	Once	the	effects	of	these	differences	are	separated,	the	re-
sidual	differences	can	be	traced	to	substitution	and	technological	change.	EdmondsEdmonds	
et	al. (2000) emphasize Hourcade and Robinson’s (1996) finding of the importance	(2000) emphasize Hourcade and Robinson’s (1996) finding of the importance(2000)	emphasize	Hourcade	and	Robinson’s	(1996)	finding	of	the	importance	
of	 assumptions	 underlying	 model	 design.	 Concerning	 the	 role	 of	 technological	
change, they note that technological change mitigates costs and occurs over long, they note that technological change mitigates costs and occurs over long	they	note	that	technological	change	mitigates	costs	and	occurs	over	long	
time	horizons.	They	stress	that	technological	change	can	be	induced	by	policies,	
and	that	including	induced	technological	change	is	important,	however	difficult.

On discussions about why studies differ, TAR revisits the top-down ver-	discussions about why studies differ, TAR revisits the top-down ver-s	about why studies differ, TAR revisits the top-down ver-	why	studies	differ,	TAR	revisits	the	top-down	ver-
sus	 bottom-up	 controversy.	 Top-down	 models	 are	 distinguished	 into CGE andto CGE and	 CGE	 and	
time-series-based	econometric	models,	and	TAR	points	out	that	the	former	typetype	
is arguably more suitable for describing long-run steady-state behavior, while the	arguably	more	suitable	for	describing	long-run	steady-state	behavior,	while	the	
latter	models are more suitable for forecasting in the short-run. TAR also notes thatmodels	are more suitable for forecasting in the short-run. TAR also notes that	more	suitable	for	forecasting	in the short-run. TAR also notes thatin	the short-run. TAR also notes thatthe	short-run.	TAR	also	notes	that	
efforts	are	being	made	to	eliminate	these	shortcomings	(IPCC	2001,	pp. 591).p. 591)..	591).	

EMF	19	(2004)	set	out	to	understand	how	models	being	used	for	glob-
al	climate	change	policy	analyses	 represent	current	and	potential	 future	energy	
technologies,	and	technological	change.	Weyant	(2004)	summarizes	 three	main	
insights	from	the	study:	developing	and	implementing	new	energy	technology	is	
necessary	for	stabilizing	atmospheric	CO

2
	concentration;	the	required	transition	

will	 be	 costly	 to	 implement,	 and	 implementation	 will	 take	 many	 decades;	 but	
costs	may	be	moderated	if	it	is	possible	to	pursue	many	options,	to	phase	in	new	
technologies	gradually,	and	if	supporting	policies	start	soon.

In	an	extensive	survey	of	 the	recent	 literature,	Sijm	(2004)	focuses	on	
models	that	exhibit	features	of	endogenous	technological	change.2	He	separates	
bottom-up	and	top-down	studies	and	finds	major	similarities	in	the	outcomes	of	
models	in	the	former	category,	e.g.	costs	decline,	the	energy	mix	changes	towards	
fast	 learners,	 and	 total	 abatement	 costs	 decline.	 Modeling	 studies	 in	 the	 latter	
category,	however,	show	a	wide	diversity	in	outcomes	with	regard	to	the	impact	
of	induced	technological	change.	He identifies variations in the following modelHe	identifies	variations	in	the	following	model	
features	 as	 possible	 explanations: ITC channels; optimization criteria; model:	 ITC	 channels; optimization criteria; model; optimization criteria; model	 optimization	 criteria; model; model	 model	
functions; calibration; spillovers; and also aggregation; number and type of policy; calibration; spillovers; and also aggregation; number and type of policy	calibration; spillovers; and also aggregation; number and type of policy; spillovers; and also aggregation; number and type of policy	spillovers; and also aggregation; number and type of policy; and also aggregation; number and type of policy	and	also	aggregation; number and type of policy; number and type of policy	number	and	type	of	policy	
instruments; and the time horizon.; and the time horizon.	and	the	time	horizon.

These	 modeling	 comparison	 exercises	 illuminate and outline reasonsilluminate	 and	 outline reasons	 reasons	
why	models	differ	in	their	cost	estimates.	Several	studies	list	induced	technologi-
cal	change	as	a	good	candidate	for	explaining	some	of	these	differences.	However,	
the	extent	of	its	impact	and	the	precise	reasons	as	to	how	and	why	technological	
change	matters	remain	unclear	in	many	cases.	Focusing	on	the	effects	of	ITC,	all	

2.	 For	a	recent	collection	of	models	incorporating	ETC,	see	Vollebergh	and	Kemfert	(2005).



participating	modeling	teams	of	the	IMCP	deliver	scenarios	in	which	technologi-
cal	change	processes	have	been	‘switched	off’	and	‘switched	on’.	A	comparison	
between	these	scenarios	allows	on	the	one	hand,	a	quantitative	assessment	of	tech-
nological	change	and	on	the	other	hand,	a	further	explanation	of	the	underlying	
economic	mechanisms	that	explain	different	model	outputs.

3. MoDEL CLASSiFiCATion

The	 models	 considered	 in	 this	 comparative	 study	 have	 two	 common	
aspects: they incorporate technological change in innovative ways and allow an:	they incorporate technological change in innovative ways and allow anthey incorporate technological change in innovative ways and allow anhey	incorporate	technological	change	in	innovative	ways	and	allow	an	
assessment	of	costs	of	global	carbon	dioxide	mitigation.	At	the	same	time,	a widea	wide	
range	of model types is represented in this project. Understanding the conceptions	model	types	is	represented	in	this	project.	Understanding	the	conceptions	
underlying	 the	 designs	 of	 different	 model	 types	 is	 necessary	 when	 comparing	
models	within	and	across	model	types.	In	this	section	we	give	a	summary	of	the	
concepts	on	which	we	base	our	discussion.	We	start	with	a	general	classification,	
which	serves	as	a	guideline	for	the	brief	introduction	of	the	models	that	follows.	
As	the	major	motivation	for	the	design	of	many	models	as	well	as	a	key	question	
in	this	study, we draw focus on the determination of the economic impact of cli-, we draw focus on the determination of the economic impact of cli-	we draw focus on the determination of the economic impact of cli-e	draw	focus	on	the determination of the economic impact of cli-	determination	of	the	economic	impact	of	cli-
mate	policies	in	terms	of	social	costs, and recapitulate different concepts of costs,	and	recapitulate different concepts of costsrecapitulate	different	concepts	of	costs	
which	are	prominent	in	different	model	types..

3.1 Model Types in iMCP

In	Table	1,	we	differentiate	four	models	types,	mainly	characterized	by	
their	calculus,	i.e.	the	mathematical	paradigm	underlying	the	computation.	

1. Optimal growth models	–	maximize	social	welfare	intertemporally.
2. Energy system models –	minimize	costs	in	the	energy	sector.
3. Simulation models –	 solve	 initial	 value	 or	 boundary	 condition	

problems	(this	includes	econometric	models,	i.e.	models	which	base	
a	subset	of	their	relationships	on	historical	time	series).	

4. General equilibrium market models	–	balance	demand	and	supply	
among	multiple	actors.

Many	models	in	this	study	transcend	the	outlined	categories.	Whilst	the	
modeling	paradigm	that	underlies	a	model	is	useful	for	understanding	its	dynam-
ics,	we	urge	the	reader	to	consult	the	individual	papers	for	an	in-depth	discussion	
of	the	models.

These	papers	also	include	discussions	of	the	model	calibration	and	sen-
sitivity	analysis	of	crucial	parameters.	Model	calibration	is	important	to	gauge	the	
parameter	uncertainties	going	into	the	models,	and	sensitivity	analysis	assesses	the	
effect	of	these	uncertainties.	Model	calibration	includes	equations	of	the	basic	mod-
el	and	the	equations	specifying	how	technological	change	behaves.	That	is	the	basic	
model	describing	macroeconomic	variables	(such	as	gross	world	product,	energy	
demand,	etc.)	on	the	one	hand,	and	how	technological	change	affects	the	dynamics	
of	these	main	variables	and	is	affected	by	them	on	the	other	hand.	For	this	analysis,	
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all	models	are	calibrated	such	that	the	main	variables	show	similar	behavior	during	
the	first	twenty	years	of	the	projected	time.	Again,	we	refer	the	reader	to	the	indi-
vidual	model	papers	for	details.

Model	uncertainty,	in	particular	structural	differences	in	the	description	
of	ETC	is	assessed	in	this	report.	For	the	purpose	of	model	comparison, the di-, the di-	the	di-
versity	of	assumptions	underlying	the	models	(Table	2)	becomes	an	asset	to thisto this	this	
project	as	it	allows	for	robust	conclusions	to	be	drawn.	

3.1.1 Optimal Growth Models

Economic	growth	is	a	major	driver	for GHG emissions. Optimal growthfor GHG emissions. Optimal growth	GHG	emissions.	Optimal	growth	
models	are	aimed	at	understanding	growth	dynamics	over	long	term	horizons.	The	
key	property	of	neoclassical	growth	models	is	their	social	welfare	maximizing	be-
havior.	Early	growth	models	determined	optimal	capital	accumulation.	Endogenous	
growth	theory	extends	this	framework	to	include	economic	forces	that	explain	tech-
nological	change.	Among	 the	growth	models	 represented	 in	 this	 study	a	varying	
degree	of	 technological	change	 is	endogenous.	 In	AIM/Dynamic-Global, growth, growth	growth	
accrues	 from	 autonomous	 energy	 efficiency	 improvements	 in	 addition	 to	 capital	
accumulation	(the	later	is	of	course	present	in	all	models).	DEMETER-1CCS,	EN-
TICE-BR	and	FEEM-RICE	use	exogenous	total	factor	productivity	(Table	2,	last	
column)	 hence	 ETC	 implemented	 in	 these	 models	 also	 contributes	 to	 economic	
growth.	In	MIND,	growth	is	fully	endogenous.	These	models	derive	a	first-best	or	
a	second-best	social	optimum	and	may	be	used	as	intertemporal	social	cost	benefit	
analysis	of	mitigation	strategies.	First best models	 like	MIND	implicitly	assume	
perfect	markets	and	the	implementation	of	optimal	policy	tools.	InIn	second best mod- best mod-

Table 1. Classification of Models in the iMCP
 Technological detail 

Calculus	 Top Down Bottom Up 

Welfare	maximization	 Optimal	growth	models	
	 ENTICE-BR		
	 FEEM-RICE	
	 DEMETER-1CCS	
	 AIM/Dynamic-Global	
	 MIND	1.1	 	

Cost	minimization	 		 Energy	system	models	
	 	 MESSAGE-MACRO	
	 	 GET-LFL	
	 	 DNE21+	

Initial	value	problems	 Simulation	models	
	 E3MG	 	

Static	equilibrium	+		 Computational	general	equilibrium		
recursive	dynamics		 models	(CGE)	
	 IMACLIM-R
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els	like	FEEM-RICE	market	imperfections	or	sub-optimal	policy	tools	are not re-are not re-	not	re-
movable	or	modifiable.	Policy	of	non-reproducible	input	factors		instruments	would	
be	necessary.	In	other	words,	they	may	take	so	called	no-regret	options	into	account.	
In	this	case,	the	opportunity	costs	of	climate	protection	can	be	lower or sometimes	or sometimes	sometimes	
even	negative	compared	to	the	baseline,	dependent	on	the	design	of	climate	policy.

In	AIM/Dynamic-Global,	ETC	concerns	energy	efficiency	(Masui	et	al.	
2006).	In	addition	to	autonomous	energy	efficiency	improvements,	 investments	
in	 energy	 conservation	 capital	 raise	 macroeconomic3	 energy	 efficiency	 in	 the	
manufacturing	 sector,	 i.e.	 ETC	 affects	 the	 energy	 efficiency	 parameters	 in	 the	
production	function	which	increases	if	the	energy	conservation	capital	stock	in-
creases	faster	than	the	output	in	the	manufacturing	sector.	AIM/Dynamic-Global	
divides	the	world	into	six	regions	and	describes	regions	with	nine	sectors	which	
are	mostly	energy	related.

FEEM-RICE	(Bosetti	et	al.	2006)	is	modeled	after	Nordhaus’	regionalized	
integrated	assessment	model,	RICE	99	(Nordhaus	and	Boyer	2000).	It	differentiates	
eight	world	regions	and	computes	the	global	solution	by	solving	a	non-cooperative	
Nash	game.	ETC	in	FEEM-RICE	is	represented	by	an	energy	technological	change	
index	 (ETCI)	which	 is	 increased	 through	R&D	investments	as	well	 as	by	 learn-
ing-by-doing	in	carbon	abatement.	Its	impact	is	twofold:	ETCI	affects	the	partial	
substitution	coefficients	 in	a	Cobb-Douglas	production	 function,	 shifting	 income	
shares	from	energy	to	capital.	Secondly,	ETCI	decreases	the	macroeconomic	carbon	
intensity.	FEEM-RICE	 is	presented	 in	 two	parameterizations,	FAST	and	SLOW,	
reflecting	different	assumptions	about	the	speed	of	technological	progress,	its	effec-
tiveness	and	the	crowding	out	effects	between	different	types	of	investments.	

ENTICE-BR	(Popp	2006)	is	based	on	Nordhaus’	DICE	model	(Nordhaus	
and	Boyer	2000),	hence	it	does	not	resolve	regions.	Among	other	modifications,	Popp	
incorporates in his model, an R&D sector with two knowledge stocks. They are built	in	his	model, an R&D sector with two knowledge stocks. They are built, an R&D sector with two knowledge stocks. They are built	an	R&D	sector	with	two	knowledge	stocks.	They	are	built	
up	endogenously	by	R&D	investments,	one	affecting	macroeconomic	energy	effi-
ciency	and the other lowering the price of a generic backstop technologyand the other lowering the price of a generic backstop technology	the	other	lowering the price of a generic backstop technologying the price of a generic backstop technology	the	price	of	a	generic	backstop	technology4.	Energy	is	
produced	either	by	this	backstop	technology,	or	from	fossil	fuels	in	a	corresponding	
sector.	Both	ENTICE-BR	and	FEEM-RICE	derive	a	second-best	social	optimum	by	
simulating	market	behavior	in	an	intertemporal	optimization	framework.

The	model	MIND	(Edenhofer	et	al.	2006)	is	an	intertemporal	optimiza-
tion	model	with	a	macroeconomic	sector	and	 four	different	energy	sectors:	 re-
source	extraction,	fossil-fuel	based	energy	generation,	a	renewable	energy	source,	
and	carbon-capturing	and	sequestration	(CCS).	The	growth	engine	in	the	macro-
economic	sector	is	fueled	by	R&D	investments	in	labor	productivity	and	energy	
efficiency.	There	 is	 no	 autonomous	 total	 factor	 productivity	 improvement.	The	
investments	in	the	different	energy	sectors	are	determined	according	to	an	inter-
temporal	optimal	investment	time	path.	MIND	derives	a	first-best	social	optimum	

3.	 	Here,	we	use	the	term	macroeconomic	to	indicate	an	effect	or	process	described	at	the	macro	
level,	e.g.	described	by	one	parameter	for	the	economy.

4.	 	Backstop	technologies	provide	carbon-free	energy	and	are	not	subject	to	any	scarcities.
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and	 therefore	 calculates	 the	 potential	 of	 ITC	 for	 reducing	 the	 costs	 of	 climate	
protection	if	market	failures	and	social	traps	at	the	international	level	are	resolved	
by	appropriate	policy	measures.	

DEMETER-1CCS	models	a	dynamic	economic	system	which	is	inter-
temporally	optimal	for	the	representative	household.	The	firms	solve	a	per-period	
dynamic	optimization	problem,	 treating	 learning	effects	 as	external	 to	 the	pro-
duction	decision	level	(Gerlagh	2006).	Moreover,	it	comprises	a	composite	good	
sector	and	different	energy	sectors	for	renewable	energy	sources	(playing	the	role	
of	a	backstop-technology)	and	for	fossil	fuels.	In	the	energy	sector	the	costs	are	
reduced	through	learning-by-doing.

3.1.2 Energy System Models

Energy	system	models	usually	derive	a	cost-minimum	sequence	of	en-
ergy	technologies	for	an	exogenously	given	energy	demand	using	linear	program-
ming.	In	more	advanced	versions,	the	energy	technologies	are	improved	by	learn-
ing-by-doing.	The	main	 advantages	of	 this	 approach	are	 the	detailed	depiction	
of	the	energy	sector	and	the	possibility	of	basing	technological	change	on	an	en-
gineering	assessment	of	different	technologies.	Three	energy	system	models	are	
participating:	DNE21+,	GET-LFL,	and	MESSAGE-MACRO.	

DNE21+	differentiates	eight	primary	energy	sources	in	77	world	regions	
(Sano	et	al.	2006).	Technological	change	has	an	endogenous	description	for	wind	
power,	photovoltaics,	and	fuel-cell	vehicles;	exogenous	assumptions	about	tech-
nological	change	are	made	for	other	energy	technologies.	Energy	demand	in	the	
end-use	sectors	is	modeled	using	long-term	price	elasticities;	gross	world	product	
(GWP)	is	exogenous	to	the	model.

GET-LFL	 is	 a	 globally	 aggregated	 model	 differentiating	 eight	 primary	
energy	sources	(Hedenus	et	al.	2006).	It	includes	a	carbon	capturing	and	sequestra-
tion	(CCS)	option	which	is	used	with	different	fossil	fuels	as	well	as	with	biomass.	
GET-LFL	implements	cost	minimization	with	limited	foresight	in	a	partial	equi-
librium	(energy	market),	implying	an	elastic	energy	demand.	ETC	in	GET-LFL	is	
implemented	in	learning	curves	for	investment	costs	of	carbon-free	technologies	as	
well	as	energy	conversion	technologies,	and	spillovers	in	technology	clusters.

MESSAGE-MACRO.	 The	 MESSAGE	 model	 describes	 the	 entire	 en-
ergy	system	from	resource	extraction,	through	imports	and	exports,	to	conversion,	
transportation	and	end-use	(Rao	et	al.	2006).	Learning-by-doing	is	implemented	
for	 energy	 technologies.	 MESSAGE	 is	 solved	 in	 an	 iterative	 process	 with	 the	
economy	model	MACRO,	allowing	for	some	feedbacks	between	energy	system	
and	the	macroeconomic	environment,	such	as	an	impact	on	GWP.

3.1.3 Simulation and Econometric Models

We	use	the	term	simulation	model	to	refer	to	models	that	start	at	a	given	
state	of	the	economy;	then	continue	to	calculate	the	next	time	step.	In	mathemati-



cal	terms,	they	solve	initial	value	problems	or	boundary	value	problems	given	as	
systems	of	differential	equations.	Econometric	simulation	models	are	additionally	
based	on	time	series	data,	i.e.	the	equations	are	estimated	from	data.	

Econometric	 models	 are	 represented	 by	 the	 Tyndall	 Centre’s	 E3MG	
model	(Barker	et	al.	2006).	It	is	based	on	a	post-Keynesian	disequilibrium	macro-
economic	structure	with	two	sets	of	econometric	equations	(describing	energy	de-
mand	and	export	demand)	estimated	using	Engle-Granger	cointegration.	E3MG	
differentiates	20	world	regions	modeled	with	input-output	structures,	41	industrial	
sectors,	27	consumption	categories,	twelve	fuels,	and	19	fuel	users.	

3.1.4 General Equilibrium Models

General	 equilibrium	 models	 compute	 demand/supply	 equilibria	 in	 an	
economy	modeled	in	distinct,	interdependent	sectors.	Implicitly,	households	and	
firms	within	 these	sectors	 try	 independently	 to	optimize	 their	welfare	and	 their	
profits,	respectively.	Computable	General	Equilibrium	models	(CGE)	are	promi-
nent	examples	of	this	type.	CGE	models	calculate	static	equilibria	at	each	point	in	
time	prescribing	some	growth	dynamic	in	between	time	steps,	i.e.	they	are	recur-
sive	dynamic.	This	guarantees	not	only	that	all	markets	are	cleared	but	also	that	
a	Pareto-optimum	is	achieved.	Sectoral	 resolution	and	 the	dynamics	of	 relative	
prices	are	the	main	strengths	of	CGE	models.	

IMACLIM-R	is	solved	recursively	but	includes	an	endogenous	growth	en-
gine	that	differs	from	standard	CGE	approaches	(Crassous	et	al.	2006).	The	world	is	
disaggregated	into	five	regions,	each	made	up	by	ten	economic	sectors.	Cumulative	
investments	drive	both	the	energy	efficiency	and	the	labor	efficiency	at	 the	same	
time.	IMACLIM-R	represents	formation	of	mobility	needs	through	infrastructures	
and	technical	progress	in	vehicles.	Three	transportation	sectors	(air,	sea,	and	terres-
trial)	are	differentiated	in	which	energy	efficiency	is	driven	by	fuel	prices.	Addition-
ally,	energy	technologies	in	electricity	generation	improve	via	learning-by-doing.

3.1.5 A Comment on Model Types

Different	 modeling	 frameworks	 were	 created	 for	 different	 problems,	
with	each	model	design	tailored	to	address	a	specific	set	of	questions.	The	charac-
teristics	of	the	modeling	framework	as	well	as	the	primary	questions	that	guided	
its	designs	must	be	kept	in	mind	when	comparing	the	model	results.	Repetto	and	
Austin	(1997)	note	that	macro	and	CGE	models	complement	each	other	in	pre-
dicting	short-term	and	long-term	responses	to	a	climate	policy.	Making	models	
to	predict	century	long	economic	behavior	poses	a	great	challenge	in	modeling	
frameworks	that	rely	on	past	data	or	the	present	structure	of	the	economy.	Growth	
models	using	an	optimizing	framework	allow	endogenous	savings	and	investment	
decisions	with	unlimited	foresight	while	many	recursive	dynamic	CGE	models	
restrict	optimizing	behavior	of	its	agents	to	a	sequence	of	static	equilibria.	Hence,	
the	time	path	of	emissions	and	investments	derived	by	most	CGEs	are	not	inter-
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temporally	cost-effective.	This	 lack	of	optimality	 is	not	a	shortcoming	of	 these	
models	 as	 they	 try	 to	 replicate	 the	outcome	of	decentralized	markets	 in	which	
market	imperfections	are	inherent.	In	contrast	to	recursive	CGE	models,	an	opti-
mal	economic	growth	model	allows	an	understanding	of	transition	paths	and	an	
assessment	of	what	decentralized	markets	could	achieve	if	appropriate	policy	in-
struments	were	applied.	On	the	other	hand,	most	intertemporal	economic	growth	
models	lack	economic	detail	and	offer	only	limited	insights	into	sectoral	dynam-
ics.	Energy	system	models	 focus	on	sectoral	dynamics	providing	very	detailed	
predictions.	When	 restricted	 to	 the	 energy	 sector,	 they	 neglect	 feedbacks	 with	
the	macroeconomic	environment,	e.g.	the	revaluation	of	capital.	The	integration	
of	energy	system	models	with	macroeconomic	models	is	a	topical	subject	under	
scrutiny	and	a	feature	of	several	models	in	this	study.

Three	models,	MIND,	MESSAGE-MACRO	and	E3MG,	adopt	a	hybrid	
approach,	i.e.	they	combine	features	from	different	model	designs	to	address	the	
gap	between	them.	MIND	integrates	technological	detail	similar	to	energy	sys-
tem	models	in	the	framework	of	a	growth	model.	MESSAGE-MACRO	adds	an	
economic	environment	to	an	energy	system	model	by	iterating	the	models	MES-
SAGE	 and	 MACRO.	 E3MG	 includes	 a	 cost	 minimizing	 energy	 system	 sector	
within	a	Keynesian	econometric	model.

Finally,	we	note	on	the	scope	of	the	models.	While	all	models	are	well	
calibrated,	some	models	make	very	specific	assumptions	to	explore	special	sce-
narios.	Three	models	in	particular	are	explorative	in	character.	First,	IMACLIM-R	
adopts	a	pessimistic	view	of	technological	change	by	assuming	strong	inertia	and	
by	neglecting	carbon-free	 energy	 sources	 from	backstop	 technologies.	Second,	
AIM/Dynamic-Global	 focuses	 on	 the	 investment	 in	 energy-saving	 capital	 as	 a	
mitigation	option,	and	largely	neglects	other	options.	As	a	consequence,	economic	
growth	cannot	be	decoupled	from	emissions.	Third,	FEEM-RICE	is	presented	in	
a	FAST	version	where	especially	optimistic	assumptions	are	made	about	learning	
and	the	level	of	crowding-out.

4. METHoDS oF MoDEL CoMPARiSon  

The	following	section	outlines	the	IMCP	approach	of	quantitative	model	
comparison,	specifically	which	scenarios	were	run,	and	which	model	outputs	were	
reported.	The	effects	of	climate	policies	may	be	explored	by	comparing	scenarios	
of	climate	protection	with	a	business-as-usual	scenario	(baseline).	In	accordance	
with	Article	2	of	the	UNFCCC	which	postulates	stabilizing	greenhouse	gas	con-
centrations,	we	investigate	climate	policy	scenarios	with	the	goal	of	stabilized	CO

2
	

concentration.	We	focus	on	carbon	dioxide	as	the	most	influential	GHG,	defining	
three	policy	scenarios	stabilizing	CO

2
	concentrations	at	levels	of	450ppm,	500ppm,	

and	550ppm,	respectively.	Where	possible	we	also	report	results	for	a	stabilization	
level	of	400ppm.	For	this	stabilization	level	the	probability	to	meet	the	2°C	target	
is	 substantially	 increased	 (Hare	and	Meinshausen	2004).	The	2°C	 target	 is	per-
ceived	by	some	scientists	and	influential	politicians,	CEOs	(like	Lord	Browne)	and	



governmental	bodies	(like	the	EU	Commission)	as	an	interpretation	of	Article	2	of	
the	UNFCCC.	The	concentration	levels	selected	are	somewhat	arbitrary	and	serve	
to	explore	model	responses	to	increasingly	ambitious	policies.	As	we	prescribe	a	
policy	goal	rather	than	a	policy,	model	results	represent	a	way	of	conforming	to	the	
policy	goal	and	may	guide	the	design	of	actual	climate	policy	measures.

To	assess	the	model	response	to	climate	policies	and	in	particular	the	role	
of	 ITC,	scenarios	should	 ideally	harmonize	all	other	assumptions	and	also	model	
calibration	in	order	to	isolate	the	effects	of	different	implementations	of	ITC.	It	is	
known	 that	 the	business-as-usual	 scenario	has	 strong	 impact	when	evaluating	 the	
consequences	of	climate	policies:	assuming	lower	economic	growth	and	therefore	
lower	CO

2
	emissions	implies	that	climate	protection	poses	a	lesser	challenge	to	the	

economy.	Where	models	prescribe	gross	world	product	(GWP)	and/or	emissions	ex-
ogenously,	data	from	the	Common	POLES/IMAGE	baseline	(CPI)	was	used	(Vuuren	
et	al.	2003).	However,	harmonizing	economic	output	and	emissions	in	models	which	
determine	these	numbers	endogenously	proves	to	be	difficult	if	not	impossible.	Here,	
modeling	teams	have	made	an	effort	to	calibrate	their	models	to	the	CPI	baseline,	but	
there	remain	differences	that	must	be	taken	in	account	when	interpreting	results.	

Carbon	dioxide	concentration	caps	could	not	be	imposed	in	models	that	
do	not	include	a	carbon	cycle	submodel	to	translate	emissions	into	concentrations.	
Such	models	either	prescribe	CO

2
	emission	paths	corresponding	to	the	selected	

concentration	levels	exogenously,	or	constrain	the	overall	centennial	carbon	bud-
get.	Differences	in	the	implementation	of	carbon	cycle	models	may	imply	that	the	
same	concentration	level	requires	more	stringent	emission	paths.	Care	was	taken	
that	the	carbon	cycle	models	showed	good	agreement.	

4.1 Scenario Definitions With and Without iTC

To	assess	 the	 impact	of	ETC	model	output,	 stabilization	 scenarios	were	
run	with	and	without	induced	technological	change.	The	baseline	scenarios	in	IMCP	
comprise	all	components	of	endogenous	technological	change	potentially	incorpo-
rated	in	the	considered	model.	A	policy	scenario	‘with’	induced	technological	change	
refers	to	a	scenario	in	which	additional	endogenous	technological	change	is	induced	
by	climate	policy.	 In	contrast	 to	 this,	a	policy	scenario	 ‘without’	 induced	 techno-
logical	change	means	that	climate	policy	cannot	induce	endogenous	technological	
change	beyond	the	baseline	scenario.	Therefore,	in	a	policy	scenario	without	ITC,	
technological	change	simply	follows	the	time	path	of	the	baseline	scenario	as	if	it	
was	given	exogenously.5	A	comparison	between	‘with’	and	‘without’	induced	tech-
nological	change	measures	the	extent	to	which	climate	policy	induces	technological	
change	in	addition	to	baseline	ETC.	Table	3	summarizes	these	scenario	definitions.

5.	 	The	time	paths	of	ETC	related	variables	in	the	baseline	simulation	are	stored	and	then	prescribed	
as	exogenous,	fixed	time	series	in	this	scenario.

Induced Technological Change		/		69



70		/		The Energy Journal

4.2 Model output and indicators

The	broad	range	of	models	 is	a	key	asset	of	 this	comparison,	naturally	
comparable	 model	 outputs	 that	 are	 available	 in	 all	 models	 are	 of	 an	 aggregate	
nature.	More	specific	outputs	might	allow	deeper	insights	into	some	models	but	
would	exclude	others.	The	selected	model	outputs	 (e.g.	GWP,	emissions,	 incre-
mental	costs	of	carbon,	energy	use,	and	the	fuel	mix)	and	the	derived	indicators	
(e.g.	macroeconomic	costs	and	sector	costs,	energy-	and	carbon	intensity)	reflect	
this	trade	off.

Despite	the	effort	to	harmonize	assumptions	and	scenarios	among	mod-
els,	 it	 remains	a	challenging	 task	 to	determine	why	model	 results	differ,	 i.e.	 to	
disentangle	the	role	of	ITC	from	other	assumptions.	In	addition	to	 the	analysis	
offered	in	this	paper,	modelers	were	asked	to	elaborate	on	the	calibration	of	their	
model	and	its	sensitivities	in	their	paper	contributions	to	this	special	issue,	thus	
providing	a	starting	point	to	assess	the	assumptions	underlying	the	model	calibra-
tion	and	their	implications.	

4.3 Concepts of Mitigation Costs

The	 SAR	 distinguishes	 four	 types	 of	 mitigation	 costs	 (IPCC	 1996,	 p.	
269).	This	 taxonomy	 of	 costs	 provides	 a	 useful	 guide	 for	 the	 interpretation	 of	
results	and	is	therefore	recapitulated	in	the	following:

1. Direct engineering costs of specific technical measures:	 These	
numbers	provide	some	information	about	the	costs	of	a	mitigation	
measure	 or	 a	 specific	 technology.	 The	 cost	 estimates	 are	 mainly	
derived	 from	 engineering	 process-based	 studies	 of	 specific	
technologies.	Examples	include	the	costs	of	switching	from	coal	to	
gas.	In	this	model	comparison,	they	are	presupposed	in	all	models.	

2. Economic costs for a specific sector	are	computed	in	sector-specific	
models,	 which	 allow	 the	 integration	 of	 a	 multitude	 of	 mitigation	
measures,	 often	 in	 a	 partial	 equilibrium	 framework.	 For	 example,	
energy	system	models	assess	the	sectoral	costs	of	the	energy	sector.6	

3. Macroeconomic costs	 reflect	 the	 impact	 of	 a	 given	 mitigation	
strategy	on	the	 level	of	 the	gross	domestic	product	(GDP)	and	its	
components.	At	this	level	of	analysis,	feedbacks	between	sectors	and	

6.	 Note	that	MESSAGE-MACRO	goes	beyond	this	by	linking	with	the	MACRO	model.

Table 3. Summary of iMCP Scenario Definitions
The	baseline	is	a	business-as-usual	scenario.	Technological	change	is	determined	endogenously.	

Policy scenarios with ITC	impose	a	policy	goal	of	CO
2
	stabilization	at	three	different	levels	(450,	

500,	550ppm	CO
2
)	or	comparable	

Policy scenarios without ITC	impose	the	same	policy	goal	but	restrict	technological	change	to	the	
extent	found	in	the	baseline	scenario	



the	macroeconomic	environment	are	accounted	for.	Such	“general	
equilibrium	effects”	can	be	calculated	by	models	which	encompass	
either	the	whole	economy,	or	coupled	models	of	specific	sectors	and	
macro-economy.	Thus,	macroeconomic	costs	include	the	effects	of	
engineering	costs	and	sector-specific	costs.

4. Welfare costs:	 The	 GDP	 variations,	 underlying	 the	 assessment	
of	macroeconomic	costs,	do	not	provide	an	adequate	measure	of	
human	 welfare	 because	 the	 ultimate	 goal	 of	 economic	 activities	
is	 not	 producing	 GDP	 but	 allowing	 consumption	 of	 private	 and/
or	 public	 goods	 and	 leisure.	 Mitigation	 policies,	 however,	 may	
increase	investments	and	thus	GDP	while	at	the	same	time	reducing	
consumption.	 Therefore,	 GDP	 is	 not	 a	 reasonable	 indicator	 for	
human	welfare.	However,	per	capita	consumption	is	also	a	flawed	
indicator	for	welfare	because	human	welfare	is	not	always	a	linear	
function	of	per	capita	consumption.	Therefore,	most	intertemporal	
optimization	 models	 assume	 in	 accordance	 with	 some	 empirical	
evidence	that	the	utility	index	is	an	increasing	function	of	per	capita	
consumption,	and	marginal	utility	is	decreasing	with	consumption.	
This	 implies	 that	 costs	 measured	 in	 per	 capita	 consumption	 are	
exaggerated	 or	 underestimated	 depending	 on	 the	 per	 capita	
consumption	 level.	 Moreover,	 the	 utility	 index	 depends	 also	 on	
the	 distributional	 issues	 and	 non-market	 traded	 goods	 and	 bads.	
Economists	who	rely	on	welfare	theory	may	argue	that	the	utility	
index	could	be	modified	according	to	fairness	criteria	and	public	
goods.	Therefore,	this	index	could	be	used	as	a	reliable	indicator	
for	human	welfare.	

Within	IMCP,	we	analyze	the	impact	of	mitigation	strategies	on	the	sec-
ond	and	third	types	of	costs.	Welfare	implications	along	the	lines	of	item	4	are	
not	assessed	explicitly	because	the	models	participating	in	IMCP	do	not	share	a	
common	measure	of	welfare.	

It	seems	worthwhile	to	note	that	all	these	cost	concepts	leave	room	for	
interpretation	and	may	fuel	a	debate	about	the	explanatory	power	of	mitigation	
cost	estimations.	When	GWP	losses	and	consumption	losses	per	capita	are	report-
ed	in	absolute	numbers,	these	are	naturally	large	and	may	create	the	impression	
that	mitigation	is	a	costly	option.	Put	into	perspective	as	relative	percentage	of	the	
net	present	value	of	the	GWP	in	the	business-as-usual	scenario,	mitigation	may	be	
seen	as	only	postponing	economic	growth	for	several	months.	A	simple	thought	
experiment	illustrates	this	point:	Assume	that	GWP	growth	of	2%	per	year	in	the	
business-as-usual	scenario.	If	mitigation	policy	lowered	growth	to	1.97%,	GWP	
losses	over	the	whole	century	discounted	by	5	%	would	amount	to	1%.	In	conse-
quence,	the	annual	GWP	that	would	have	been	achieved	in	2100	is	now	reached	
in	2101	(see	Azar	and	Schneider	2002	for	a	similar	argument).	Does	this	imply	
that	mitigation	costs	nearly	nothing	for	humankind?	One	could	argue	that	with	
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these	trillions	of	dollars	the	lives	of	millions	of	poor	people	could	be	rescued,	e.g.	
by	investing	in	clean	water	facilities.	On	the	other	hand,	damages	caused	by	non-
action	may	destroy	the	rural	habitats	of	millions	of	people	elsewhere	which	also	
rarely	count	in	terms	of	GWP.	There	is	need	for	further	investigation	of	the	extent	
to	which	rapid	climate	change	affects	the	welfare	of	people.	Whilst	acknowledg-
ing	that	different	social	outcomes	can	be	hidden	behind	an	aggregated	number	like	
GWP	and	the	limitations	of	this	approach,	some	useful	insights	about	the	impact	
of	ITC	can	be	drawn	using	GWP.	Clearly,	a	situation	where	GWP	is	 increased	
because	of	ITC	is	preferable	to	a	situation	where	climate	policy	reduces	the	op-
portunities	to	invest	in	other	desirable	global	projects.

In	the	context	of	IMCP	we	report	GWP	losses	and	consumption	losses	in	
terms	of	relative	net	present	value	which	means	that	we	measure	the	net	present	
value	losses	between	the	business-as-usual	scenario	and	the	policy	scenario	and	
relate	them	to	the	net	present	value	of	GDP	in	the	business-as-usual	scenario.	This	
allows	a	comparison	of	the	cost	estimations	of	different	models.	

When	interpreting	mitigation	costs,	 it	 is	necessary	 to	recall	 that	 in	 the	
IMCP	we	compare	mitigation	costs	at	given	stabilization	 levels.	Some	models,	
e.g.	ENTICE-BR	and	FEEM-RICE	estimate	climate	change	impacts	caused	by	
specific	stabilization	levels.	Therefore,	the	benefits	of	avoiding	such	impacts	are	
reflected	in	the	GWP	losses	in	these	models.	In	the	IMCP,	we	inform	the	reader	
only	about	the	mitigation	costs	of	achieving	a	certain	stabilization	level	irrespec-
tive	 how	 much	 damages	 can	 be	 avoided	 by	 the	 predefined	 stabilization	 levels.	
In	the	cases	of	ENTICE-BR	and	FEEM-RICE	the	mitigation	costs	are	reduced	
further	by	the	damages	caused	at	the	specific	stabilization	level.	Therefore,	these	
GWP	losses	can	be	interpreted	as	net	mitigation	costs.	In	the	following	section	we	
discuss	the	impact	of	technological	change	on	these	mitigation	costs.	

5. RESuLTS AnD DiSCuSSion

This	section	presents	the	collected	data	as	follows:	First	we	outline	and	
analyze	the	costs	of	achieving	specific	stabilization	targets.	Second,	we	analyze	
the	necessary	emission	reductions	in	the	different	models	in	terms	of	their	effect	
on	carbon	intensity,	energy	intensity,	and	gross	world	product.	Third,	the	transfor-
mation	of	the	energy	system	which	is	a	key	challenge	to	meet	the	climate	protec-
tion	targets	is	described	and	evaluated.	

5.1 Mitigation Costs within Different Model Types

In	this	section	we	refer	simultaneously	to	two	different	representations	of	
mitigation	costs.	In	both	representations	–	Figure	1	and	in	Figure	2	–	we	show	the	
mitigation	costs	as	a	loss	of	gross	world	product	(GWP).	Figure	1a	shows	mitigation	
costs	from	different	models	relative	to	the	respective	baseline	GWP	in	the	case	when	
technological	change	is	switched	on	(cf.	scenario	definitions	in	Table	3).	In	Figure	1b	
the	cost	estimations	are	reported	when	technological	change	is	switched	off,	Figure	



1c	indicates	the	additional	mitigation	costs	for	the	scenarios	without	technological	
change,	i.e.	the	differences	between	Figure	1a	and	Figure	1b.	Figure	1c	shows	the	
potential	to	induce	technological	change	in	the	different	models:	the	larger	the	cost	
increase	when	ITC	is	switched	off,	the	lower	the	potential	of	endogenous	technologi-
cal	change	incorporated	in	the	implementation	in	that	model.	If	a	models	incorpo-
rated	no	endogenous	technological	change,	Figure	1c	would	indicate	no	additional	
costs	because	costs	with	ITC	would	be	the	same	as	costs	without	ITC.	

In	Figure	2	the	mitigation	costs	are	shown	as	a	function	of	the	cumula-
tive	CO

2
	reduction.	The	plotted	data	points	correspond	to	the	550,	500	and	450	

ppm	stabilization	scenario.	The	main	purpose	of	Figure	2	is	to	relate	costs	to	the	
mitigation	gap	which	has	to	be	overcome	by	the	different	models.	In	some	models	
the	costs	are	relatively	low	because	of	a	small	mitigation	gap	and	not	because	of	
a	strong	impact	of	ITC	on	the	costs.	In	all	but	two	models,	mitigation	costs	are	
computed	as	the	difference	in	cumulated	GWP	(2000	to	2100)	between	baseline	
and	policy	scenarios,	discounted	at	a	rate	of	5%	and	relative	to	(discounted)	base-
line	GWP	of	the	same	time	span.7	As	there	is	no	endogenous	GWP	in	DNE21+	
and	GET-LFL,	they	present	instead	energy	system	costs	and	producer/consumer	
surplus	in	the	energy	sector,	respectively.8	

By	plotting	 the	costs	at	different	stabilization	 levels	against	 the	corre-
sponding	cumulative	CO

2
	reductions	(also	2000	to	2100),	the	costs	are	put	into	

perspective	of	the	mitigation	challenge	that	each	model	is	confronted	with	in	the	
policy	scenarios.	

The	severity	of	the	challenge	is	determined	by	the	‘mitigation	gap‘,	i.e.	
the	 difference	 between	 predicted	 business-as-usual	 emissions	 and	 admissible	
emissions	in	the	policy	scenario.	Models	tend	to	agree	on	the	latter,	which	is	a	
property	of	 the	carbon	cycle	modules	 in	 the	models,	but	advocate	various	pre-
dictions	of	business-as-usual	GWP	growth	and	CO

2
	emissions.	Consequently,	so	

called	baseline	effects	have	a	strong	influence	on	the	results.	Figure	2a	depicts	re-
sults	from	scenarios	with	ITC;	for	the	scenarios	in	Figure	2b,	ITC	was	disabled.

With	one	exception	(E3MG),	the	models	agree	about	the	trend	of	costs:	
lower	concentration	targets	imply	larger	costs.	Also,	costs	rise	disproportionately	
with	CO

2
	reductions.	
In	Figure	1a	and	Figure	2a,	two	models	(E3MG	and	FEEM-RICE-FAST)	

show	negative	costs,	i.e.	gains	from	implementing	climate	policies.	In	the	case	of	
E3MG,	this	originates	from	the	Keynesian	treatment	of	demand-side	long-term	

7.	 	We	use	a	5%	rate	to	discount	GWP	reductions	from	all	models	to	make	numbers	comparable	
among	models	and	to	other	studies	in	the	literature.	The	rates	of	pure	time	preference	used	in	models	
that	anticipate	future	development	vary:	ENTICE-BR	and	FEEM-RICE	use	a	3%	rate	initially	which	
declines	over	the	course	of	the	century;	AIM/Dynamic-Global	applies	a	4%	discount	rate;	the	rates	
of	pure	 time	preference	are	3%	and	1%	in	DEMETER-1CCS	and	MIND,	 respectively;	 the	energy	
system	models	(DNE21+,	GET-LFL,	and	MESSAGE-MACRO)	use	a	5%	discount	rate.	There	is	no	
(macroeconomic)	discounting	in	E3MG	(except	in	the	electricity	sector)	and	IMACLIM-R.	

8.	 	Surplus	and	energy	system	costs	are	converted	 to	 the	same	metric	as	 the	GWP	losses,	 i.e.	 their	
difference	between	baseline	and	policy	scenarios	is	presented	relative	to	the	present	value	of	baseline	GWP.
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Figure 1.  Mitigation Costs

Figure	1a	shows	loss	of	gross	world	product,	except	for	DNE21+,	which	reports	the	increase	in	en-
ergy	system	costs	relative	to	the	baseline,	and	GET-LFL,	which	reports	the	difference	in	producer	
and	consumer	surplus.	Figure	1b	displays	the	corresponding	data	from	the	scenarios	without	ITC.	
Figure	1c	shows	the	difference	between	Figure	1a	and	Figure	1b.	

(a)	Mitigation	costs	with	ITC

(b)	Mitigation	costs	without	ITC

c)	Difference	of	mitigation	costs	with	ITC	and	without	ITC
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Figure 2.  Mitigation Costs as a Function of Cumulative Co2 Reduction

All	models	 report	 loss	of	gross	world	product	 except	 the	DNE21+	which	 reports	 the	 increase	 in	
energy	system	costs	relative	to	the	baseline,	and	GET-LFL	which	reports	the	difference	in	producer	
and	consumer	surplus.	The	plotted	data	points	correspond	to	the	550,	500,	and	450ppm	stabilization	
scenarios	(with	increasing	CO

2
	reductions).	In	case	of	MESSAGE-MACRO,	the	presented	scenario	

is	500ppm	stabilization.	Not	shown	for	scaling	reasons	are	GWP	losses	from	IMACLIM-R	which	
range	from	2.5-6.2%	in	scenarios	with	ITC	and	6.8-15.4%	in	scenarios	without	ITC.

	(a)	Mitigation	costs	with	ITC	relative	to	corresponding	CO
2
	reductions

(b)	Mitigation	costs	without	ITC	relative	to	corresponding	CO
2
	reductions
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growth	that	assume	increasing	returns	to	production	and	under-employment	of	la-
bor	resources	in	the	global	economy.	In	E3MG,	policy-driven	increases	in	carbon	
prices	lead	to	more	investment	and	output.	In	the	case	of	FEEM-RICE-FAST	the	
negative	costs	are	the	consequence	of	the	optimistic	assumptions	on	the	effects	of	
R&D	investments	and	of	the	role	that	stabilization	targets	have	in	inducing	more	
R&D	investments.	This	reduces	the	inefficiencies	in	the	global	R&D	market	that	
are	calibrated	in	their	second-best	baseline	scenario.

We	now	discuss	these	results	in	more	detail	by	model	design	and	by	in-
dividual	model.	We	start	with	cost	estimates	of	energy	system	models,	which	are	
relatively	low,	partially	due	to	neglected	general	equilibrium	effects.	In	a	second	
part	we	consider	the	results	of	general	equilibrium	market	models	and	simulation	
models	which	calculated	relatively	high	mitigation	costs	because	they	are	focused	
on	price	effects	and	neglect	intertemporal	investment	dynamics.	Finally,	the	opti-
mal	growth	models	within	IMCP	are	discussed.

5.1.1 Energy System Models 

Mitigation	costs	in	the	energy	system	models	DNE21+,	GET-LFL	(Fig-
ure	1	and	Figure	2)	differ	from	those	reported	by	other	models	in	this	exercise,	
which	measure	the	loss	of	GWP	(or	welfare).	The	opportunity	costs	of	climate	
protection	are	measured	as	the	increase	in	energy	system	costs	compared	to	the	
baseline	in	DNE21+,	and	measured	in	terms	of	producer/consumer	surplus	rela-
tive	to	the	baseline	in	the	case	of	GET-LFL.	We	emphasize	that	using	alternative	
metrics	in	our	comparisons	is	problematic.	In	fact,	while	macroeconomic	models	
are	 less	adept	 to	account	for	 the	system	engineering	costs	 in	 the	energy	sector,	
some	 system	engineering	models	do	not	 report	 on	 the	 aggregated	 implications	
of	mitigation	for	total	GWP.	Thus,	as	the	energy	sector	accounts	for	the	partial	
equilibrium	 effects,	 the	 mitigation	 costs	 appear	 relatively	 low	 in	 Figure	 1	 and	
Figure	2.	MESSAGE-MACRO	adopts	a	hybrid	approach,	combining	a	systems	
engineering	and	macroeconomic	model,	and	thus	calculates	energy	system	costs	
as	well	as	GWP	losses.	However,	it	remains	open	to	debate	whether	all	intertem-
poral	equilibrium	conditions	hold	in	this	framework	and	thus	all	relevant	compo-
nents	of	macro-economic	mitigation	costs	are	taken	into	account.	For	the	sake	of	
consistency	with	the	macroeconomic	models,	Figure	1	and	Figure	2	reports	loss	
in	terms	of	%	GWP.	

The	main	advantage	of	energy	system	models	 is	 their	higher	 resolution	
with	 respect	 to	 technology	 representation,	 emphasizing	 internal	 plausibility	 and	
consistency	of	structural	change	in	the	energy	system.	They	are	hence	better	at	ac-
counting	for	costs	related	to	barriers	of	technology	diffusion	and	adoption	than	mac-
roeconomic	models,	where	technology	is	traditionally	represented	in	a	more	stylized	
and	generic	way.	The	downside	of	using	purely	systems	engineering	approaches	
is	that	the	reported	energy	system	costs	do	not	provide	a	comprehensive	account	
of	potential	welfare	losses	outside	the	energy	sector.	As	discussed	above,	costs	of	
DNE21+	and	GET-LFL	presented	in	Figure	2	are	thus	relatively	small	compared	



to	the	majority	of	the	macroeconomic	models.	The	costs	of	mitigation	depicted	by	
MESSAGE-MACRO	are	seen	to	be	relatively	low	as	well,	but	mainly	because	of	the	
small	CO

2
	reductions	required	to	meet	the	500-ppm	stabilization	target.	

From	 a	 methodological	 point	 of	 view,	 the	 three	 systems	 engineering	
frameworks	differ	in	particular	with	respect	to	representation	of	energy	demand.	In	
DNE21+	demand	is	price	inelastic,	i.e.	feedbacks	from	changes	within	and	outside	
the	energy	sector	are	not	considered.	GET-LFL	takes	into	account	price-elastic	en-
ergy	demand	and	therefore	considers	rebound	effects	in	a	partial	equilibrium	of	the	
energy	market.	In	partial	equilibrium	models,	producer	and	consumer	rents	may	be	
diminished	by	climate	policy.	Therefore,	consumer	and	producer	surpluses	present	
a	better	estimate	of	the	mitigation	costs	than	energy	system	costs	in	this	model.	
Both	 these	 estimates	 of	 energy	 system	 costs	 are	 relevant	 measures	 of	 the	 costs	
imposed	by	climate	policy,	because	the	transformation	of	the	energy	system	is	one	
of	 the	greatest	challenges	posed	by	constraining	CO

2
	emissions.	In	MESSAGE-

MACRO	the	price	response	of	energy	demand	is	estimated	via	its	macroeconomic	
module	(MACRO),	where	the	economy	is	viewed	as	a	Ramsey-Solow	model	of	
optimal	long-term	economic	growth.	In	particular,	feedbacks	between	energy	and	
non-energy	sectors	are	determined	by	relative	prices	of	the	main	production	factors	
capital	stock,	available	labor,	and	energy	inputs,	subject	to	optimization.

Figure	1c	compares	the	mitigation	costs	from	Figure	1a	(with	ITC)	and	
Figure	1b	(without	ITC).	It	is	apparent	from	the	results	of	DNE21+	and	GET-LFL	
that	ITC	effects	within	the	energy	system	are	relatively	small	compared	to	 those	
given	by	macroeconomic	models,	which	account	 also	 for	GWP	changes	outside	
the	energy	sector.	Again,	this	might	not	come	as	a	surprise	because	these	energy	
system	models	calculate	only	partial	equilibrium	effects.	Another	reason	may	be	
that	for	the	DNE21+	model,	learning-by-doing	to	only	selected	technologies	(wind,	
photovoltaic,	 and	 fuel	 cell	 vehicle).	GET-LFL,	however	 extensively	 incorporates	
learning-by-doing.	In	this	case,	climate	policy	does	not	induce	significant	progress	
for	two	reasons:	floor	costs	for	carbon	capturing	and	sequestration	and	biomass	are	
already	nearly	realized	in	the	baseline	scenario	mainly	because	of	spillover	effects	
in	technology	clusters.	Additionally,	abundant	resources	of	natural	gas	help	to	close	
the	mitigation	gap	without	further	resorting	to	the	carbon-free	energy	technologies	
which	lack	learning	potential	in	the	scenario	without	ITC.	Results	of	the	latter	mod-
el	in	particular	illustrates	that	technological	detail	is	needed	to	understand	possible	
compensation	mechanisms	that	might	limit	inducement	effects	of	climate	policies	
in	the	energy	sector.		

Figure	 1	 includes	 the	 GWP	 losses	 from	 MESSAGE-MACRO	 (for	 the	
500ppm	 scenario	 only).	 In	 the	 scenario	 without	 ITC,	 mitigation	 costs	 are	 much	
higher.	However,	 comparability	 to	 the	 results	 from	other	models	 is	 limited,	 since	
MESSAGE-MACRO	ran	a	fixed	cost	“without	ITC”	scenario.	In	other	words,	the	
structure	of	the	energy	system	changes	towards	today’s	best	practice	technologies	
(given	specific	resource	and	environmental	constraints).	In	contrast,	the	other	models	
have	defined	exogenous	technological	enhancements	in	the	scenarios	without	ITC.	
The	effect	of	ITC	in	these	and	other	macroeconomic	models	are	discussed	next.
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5.1.2 General Equilibrium Models

CGE	models	are	represented	in	the	IMCP	by	IMACLIM-R.	CGE	models	
have	been	known	to	predict	high	costs	and	indeed,	IMACLIM-R	estimates	GWP	
losses	for	550,	500,	and	450ppm	stabilization	targets	at	2.5,	4.6,	and	6.2%	(Figure	
1).	As	expected,	these	numbers	are	the	highest	cost	estimates	in	this	and	there	are	
reasons	inherent	to	the	model	structure	that	explain	this	tendency.

Models	like	IMACLIM-R	calculate	a	general	equilibrium	taking	into	ac-
count	the	relative	price	effects	not	only	in	the	energy	sectors	but	in	all	sectors.	This	
way,	climate	policy	not	only	induces	a	transformation	of	the	energy	system	but	
also	a	revaluation	of	all	capital	stocks	in	the	energy	sectors	and	in	turn	in	energy	
demand	sectors.	It	follows	that	resources	within	the	economy	need	to	be	reallocat-
ed	according	to	the	changed	equilibrium.	Hence	in	a	general	equilibrium	model,	
climate	policy	has	the	potential	to	trigger	a	greater	transformation	than	that	of	the	
energy	system	alone.	Pitted	against	the	need	for	change	throughout	the	economy	
are	potentially	larger	–	economy	wide	–	flexibilities	to	react	to	the	restrictions	of	
climate	policy.	However,	recursive	dynamic	CGE	models	lack	foresight	as	well	as	
the	flexibility	of	endogenous,	sector	specific	investment	decisions.

In	particular,	the	IMACLIM-R	model	assumes	that	investments	in	the	
composite	 good	 sector	 simultaneously	 enhance	 labor	 productivity	 and	 energy	
productivity,	i.e.	investments	in	physical	capital	exhibit	an	externality.	Addition-
ally,	labor	productivity	is	improved	by	learning-by-doing.	Climate	policy	induc-
es	increases	and	reallocations	of	investment	in	the	energy	sectors	including	the	
corresponding	 learning-by-doing.	 Due	 to	 learning-by-doing	 energy	 prices	 de-
crease	and	cause	an	additional	energy	demand	–	a	rebound	effect.	These	invest-
ments	in	the	energy	and	transport	sectors	crowd	out	investments	in	the	composite	
good	sector	and	reduce	economic	growth.	The	reduction	of	 investments	 in	 the	
composite	good	sector	also	lowers	the	growth	rate	in	labor	productivity,	which	
reduces	economic	growth	further.	The	double	dividend	of	increasing	investments	
becomes	a	double	burden	if	investments	have	to	shrink.	Among	other	things,	the	
crowding	out	effect	and	this	double	burden	increase	the	opportunity	costs	of	cli-
mate	protection	–	an	effect	which	is	very	pronounced	in	IMACLIM-R.	Moreover,	
the	interplay	between	inertia	in	the	transport	sector,	imperfect	foresight	and	non-
optimal	carbon	tax	profile	induced	further	welfare	losses.	These	welfare	losses	
can	be	considerably	lowered	by	efficiency	gains	and	technology	diffusion.	

Without	 induced	 technological	change,	costs	 increase	 further	 in	 IMA-
CLIM-R,	demonstrating	that	the	implementations	of	ETC	endow	the	models	with	
additional	flexibility	(Figure	1c).	In	IMACLIM-R,	mitigation	costs	for	the	550,	
500,	and	450ppm	scenarios	climb	to	6.8,	12.0,	and	15.4%,	respectively.

5.1.3 Simulation Models

In	E3MG,	CO
2
	permits	and	taxes	are	imposed	on	the	economy	in	order	to	

achieve	the	required	stabilization	targets.	In	contrast	to	other	long-term	studies	but	



consistent	with	many	shorter-term	studies	(e.g.	IPCC	2001,	p.	516),	climate	policy	in-
duces	GWP	gains.	This	result	can	be	understood	in	comparison	with	the	second-best	
solutions	of	optimizing	models.	These	try	to	reproduce	the	market	behavior	which	in	
general	exhibits	all	sorts	of	market	imperfections	–	like	unemployment,	postponed	
price	adjustments,	etc.	–	by	relaxing	assumptions	about	perfect	market	clearing.	A	
crucial	feature	in	E3MG	is	that	although	product	markets	clear,	labor	and	other	mar-
kets	may	not	clear.	Part	of	the	effect	of	including	ITC	in	the	model	is	to	raise	growth	
by	more	labor	transfer	from	traditional	to	modern	sectors	in	the	world	economy.

This	effect	of	taxation	in	E3MG	is	due	to	the	fact	that	investors	are	limited	
in	their	foresight.	In	a	perfect	foresight	model	we	would	expect	that	investors	adjust	
their	portfolio	of	investment	according	to	long-term	price	and	taxation	expectations.	

5.1.4 optimal Growth Models

Four	of	the	models	in	the	IMCP	are	implemented	in	the	framework	of	
growth	models	subject	to	intertemporal	welfare	maximization	(MIND,	ENTICE-
BR,	AIM/Dynamic-Global,	 DEMETER-1CCS,	 and	 FEEM-RICE,	 the	 latter	 in	
FAST	 and	 SLOW	 parameterizations).	The	 large	 differences	 in	 CO

2
	 reductions	

necessary	for	stabilization	between	these	models	are	caused	by	different	baseline	
projections	of	GWP	and	the	corresponding	emissions.	These	different	projections	
are	a	direct	result	of	implementing	ETC	within	these	economy	models.	Whereas	
optimal	growth	models	without	ETC	make	an	assumption	about	GWP	growth,	
these	models	make	assumptions	about	ETC	which	then	contribute	to	overall	GWP	
growth.	This	makes	GWP	growth	a	result	of	how	ETC	is	modeled	rather	than	an	
assumption.	 In	most	optimal	growth	models	 in	 the	IMCP	overall	 technological	
change	is	determined	by	an	exogenous	total	factor	productivity	in	addition	to	an	
implementation	of	ETC.	MIND	differs	in	this	respect,	describing	technological	
change	fully	endogenously.	All	models	share	a	common	starting	point	in	2000.	
However,	large	differences	result	over	the	course	of	the	century.	

With	the	exception	of	AIM/Dynamic-Global,	the	cost	predictions	of	the	
growth	models	in	Figure	2	are	low	(below	1%	GWP	up	to	the	450ppm	scenario).	
We	have	argued	above	that	general	equilibrium	effects	tend	to	raise	the	opportu-
nity	costs	of	climate	policy,	but	these	models	are	endowed	with	perfect	foresight.	
In	conjunction	with	endogenous	investment	possibilities	this	allows	models	to	act	
flexibly	thus	avoiding	large	mitigation	costs.

AIM/Dynamic-Global	incorporates	perfect	foresight	but	studies	only	a	
single	 endogenous	 mitigation	 option.	 Energy	 efficiency	 depends	 on	 a	 stock	 of	
energy	conservation	capital.	Investment	in	energy	conservation	capital	improves	
energy	efficiency	and	is	a	decision	variable	of	the	optimization.	AIM/Dynamic-
Global	also	includes	carbon-free	energy	from	renewables	and	nuclear	power,	but	
investments	in	these	options	cannot	be	induced	by	climate	policy	–	only	invest-
ments	in	energy	conservation	are	a	control	variable.	This	demonstrates	the	impact	
of	flexibility	on	mitigation	costs	and	how	the	exclusion	of	mitigation	options	in-
creases	the	costs	substantially.
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In	contrast,	MIND	includes	investment	decisions	into	capital	stocks	of	
energy	technologies,	including	the	backstop	technology	in	particular.	We	attribute	
the	low	cost	estimates	of	these	models	to	this	flexibility.

ENTICE-BR	 and	 FEEM-RICE-SLOW	 compute	 slightly	 higher	 costs	
compared	to	MIND.	ENTICE-BR	incorporates	a	backstop	technology	which	im-
proves	through	R&D	investments.	However,	this	effect	is	overcompensated	by	the	
built-in	crowding	out	effects	caused	by	investments	in	the	energy	sector.	In	addi-
tion,	the	backstop	technology	displays	most	of	its	effects	in	the	baseline	scenario,	
independent	of	stabilization	targets.	In	FEEM-RICE-SLOW	costs	are	low	because	
of	the	combined	effect	of	learning-by-doing	and	R&D	investments.	An	increase	in	
R&D	investments	induced	by	a	stabilization	target	enhances	learning-by-doing	as	
well.	This	makes	R&D	investments	more	profitable	by	oncreasing	benefits	from	
climate	change	reductions.	ENTICE-BR	and	FEEM-RICE	GWP	numbers	include	
benefits	of	climate	policy,	and	that	the	gross	numbers	would	be	slightly	higher.

In	FEEM-RICE-FAST,	there	are	negative	mitigation	costs,	i.e.	gains	from	
mitigating	carbon.	The	FEEM-RICE	model	is	a	second-best	model	in	the	sense	that	
market	imperfections	occur	in	the	baseline	due	to	externalities	in	the	R&D	invest-
ments.	Regions	invest	too	little	in	R&D	because	of	their	non-cooperative	behavior.	
If	faced	with	climate	policy,	they	are	induced	to	increase	their	R&D	investments,	
which	get	closer	to	cooperative	levels.	That	is,	an	improvement	of	R&D	investment	
is	a	by-product	of	climate	policy.	Therefore,	climate	policy	has	a	clear	net	benefit.	
However,	this	net	benefit	changes	to	net	costs	if	the	learning-rate	is	slow	and	the	
crowding	out	effect	between	different	types	of	investments	is	large.	

The	 DEMETER-1CCS	 model	 also	 computes	 a	 second-best	 solution	
of	 the	world	 economy	accounting	 for	 independent	 actions	of	firms	and	house-
holds.	DEMETER-1CCS’s	cost	estimates	are	among	the	lowest	in	this	study,	for	
a	number	of	reasons.	In	DEMETER-1CCS	households	are	endowed	with	perfect	
foresight,	hence	even	though	firms	show	a	static	profit	maximizing	behavior,	the	
model	is	at	an	advantage	in	averting	mitigation	costs.	Moreover,	the	model	makes	
optimistic	assumptions	about	 substitution	possibilities	between	 fossil	 fuels	and	
carbon-free	energy,	and	backstop	technologies.	The	latter	are	assumed	to	exhibit	
high	learning	rates	(20%	for	renewables	and	10%	in	case	of	CCS),	and	the	share	
of	energy	from	these	sources	is	not	restricted,	e.g.	there	is	no	sharp	increase	in	
costs	when	the	energy	supply	has	to	rise	as	it	does	in	many	energy	system	models.	
Moreover,	CO

2
	emissions	are	low	in	the	baseline	scenario,	so	that	complying	with	

policy	scenarios	poses	a	smaller	challenge	than	in	other	models.
If	technological	change	is	switched	off	(Figure	2b),	costs	increase.	The	

comparison	of	Figure	1a	and	Figure	1b	in	Figure	1c	shows	that	the	cost	reduction	
potential	of	ITC	varies	between	different	models:	In	FEEM-RICE-FAST	as	well	
as	in	FEEM-RICE-SLOW,	ITC	shows	a	large	potential	for	reducing	the	mitiga-
tion	costs	when	low	stabilization	scenarios	should	be	achieved.	Both	versions	of	
FEEM-RICE	show	remarkably	similar	behavior	without	ITC,	in	particular,	GWP	
gains	 in	FEEM-RICE-FAST	have	 turned	 into	 losses,	hence	 the	observed	effect	
can	be	attributed	to	“fast”	technological	change.



In	AIM/Dynamic-Global	disabling	energy	conservation	investments	has	
some	 influence	 on	 mitigation	 costs.	The	 option	 of	 energy	 conservation	 invest-
ments	is	shown	to	have	significant	influence,	but	in	comparison	with	options	in	
other	models,	this	option	is	less	important.	

In	MIND,	mitigation	costs	increase	sharply	when	ITC	is	switched	off.	
MIND	demonstrates	 that	 removing	backstop	 technologies	when	switching	 ITC	
off	has	a	significant	impact.9	In	scenarios	without	ITC,	the	MIND	model	exhibits	
mitigation	costs	comparable	to	costs	in	CGE	models.	

In	ENTICE-BR	 the	net	 effect	of	 ITC	 is	 small	because	of	 two	effects:	
first,	investments	in	the	energy	sector	are	less	productive	than	investments	in	the	
rest	of	the	economy.	Therefore,	less	technological	progress	is	induced	in	the	poli-
cy	scenario.	Second,	the	exogenously	determined	total	factor	productivity	further	
reduces	the	impact	of	endogenous	technological	change	on	the	model	output.

5.1.5 Stricter Climate Policy (400ppm Stabilization)

Table	4	shows	that	a	few	models	achieve	a	feasible	solution	when	faced	
with	a	stabilization	target	of	400ppm	(DEMETER-1CCS,	MIND,	FEEM-RICE,	
and	GET-LFL).	In	general,	the	reason	why	many	models	cannot	derive	a	feasible	
solution	can	be	found	in	the	inflexibility	of	the	energy	system	to	manage	the	re-
quired	 cumulative	 emission	 reductions.	The	 inflexibility	 comprises	phenomena	
like	boundaries	for	the	diffusion	of	backstop	technologies,	limited	sets	of	mitiga-
tion	options	or	myopic	investment	behavior.	

5.1.6 Robust cost estimate

The	IMCP	set	out	not	only	to	learn	from	the	differences	in	model	results,	
but	also	to	identify	robust	findings.	Is	it	possible	to	identify	a	robust	estimate	of	

9.	 	In	MIND,	the	availability	of	renewable	energy	sources	and	carbon	capturing	and	sequestration	
is	considered	an	option	of	ETC	because	its	use	depends	on	the	costs	of	carbon,	consequently,	in	the	
scenarios	without	 ITC,	 the	extent	of	 renewables	and	CCS	 is	 restricted	 to	 the	baseline.	 In	all	other	
models,	 the	 availability	 of	 technologies	 is	 not	 considered	 as	 “ETC”,	 e.g.	 in	 DEMETER-1CCS’s	
scenarios	without	ITC,	renewables	and	CCS	may	be	used;	however	there	is	no	learning-by-doing	for	
these	 technologies	 in	 this	scenario.	Therefore,	 if	endogenous	 technological	change	 is	switched	off,	
MIND	can	only	reduce	energy	consumption	and	GWP.
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Table 4. Mitigation Costs for 400ppm Stabilization
 Mitigation costs [%GWP] 

Model name With iTC Without iTC	

DEMETER-1CCS	 0.07	 0.17	 	
FEEM-RICE-FAST	 0.01	 3.1	 	
FEEM-RICE-SLOW	 2.0	 3.7	 	
MIND	 0.76	 8.9	
GET-LFL	 0.62	 0.67
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climate	protection	costs	across	models	in	the	IMCP?	
One	might	be	hesitant	to	see	robustness	in	the	broad	range	of	costs	e.g.	in	

the	case	of	450ppm	stabilization,	ranging	from	benefits	to	costs	greater	than	6%	of	
aggregate	GWP	2000-2100	(at	present	value).	However,	the	range	is	reduced	con-
siderably	when	we	recognize	that	three	models	are	of	a	predominantly	exploratory	
nature,	i.e.	their	intent	is	not	to	give	a	best	estimate	but	to	explore	an	extreme	sce-
nario.	These	are:	IMACLIM-R,	which	explores	the	role	of	the	transportation	sector	
under	the	assumption	that	energy	sector	and	transportation	sector	are	inflexible	and	
externalities	of	investments	in	physical	capital	are	biased	against	energy	efficiency;	
AIM/Dynamic-Global	limiting	mitigation	options	to	investments	in	energy	conser-
vation	capital,	hence	emissions	cannot	be	decoupled	from	economic	growth	in	the	
long-run	(these	two	models	arrive	at	the	highest	costs	in	this	study);	FEEM-RICE-
FAST	exploring	the	possibility	of	“fast”	technological	change,	which	then	results	
in	benefits	of	climate	protection	rather	than	climate	protection	costs.

If	we	furthermore	consider	E3MG	separately,	because	it	is	fundamentally	
different	with	 its	Keynesian	 rather	 than	neoclassical	 point	 of	 view,	we	 are	 thus	
left	with	a	set	of	seven	models	and	cost	estimates	that	range	from	0.04%	to	0.66%	
for	450ppm	stabilization.	Average	climate	protection	costs	among	these	remaining	
models	are	0.39,	0.16,	and	0.1%,	for	450ppm,	500ppm,	and	550ppm	stabilization,	
respectively.	Here,	the	MESSAGE-MACRO	model	is	only	included	in	the	500ppm	
average	because	it	did	not	run	the	other	scenarios.	If	we	exclude	the	two	energy	
system	models	that	do	not	report	costs	in	terms	of	GWP,	the	numbers	only	slightly	
change	to	0.41,	0.16,	and	0.1	percent,	for	450ppm,	500ppm,	and	550ppm	stabiliza-
tion,	respectively.	These	last	numbers	average	over	4,	5,	and	4	models,	respectively.	
Table	5	summarizes	these	values	along	with	average	costs	at	alternative	discount	
rates,	illustrating	the	influence	of	the	discount	rate	on	the	cost	estimate.	

In	 view	 of	 this	 and	 with	 the	 considerable	 uncertainties	 about	 model	
structure	and	other	assumptions	in	mind,	it	seems	a	robust	conclusion	from	the	
presented	energy	 system	models	 and	optimal	growth	models	 to	 expect	 climate	
protection	costs	of	up	to	one	percent.

5.2 Mitigation Strategies for Different Stabilization Scenarios

In	this	section	we	identify	the	contributions	of	different	carbon	mitiga-
tion	options	towards	achieving	an	overall	mitigation	target,	and	we	assess	the	role	
of	technological	change	in	the	mitigation	effort.	Kaya’s	identity10	provides	a	set	of	
indicators	that	pinpoint	the	different	ways	taken	by	models	to	meet	a	given	target,	
namely	the	attribution	of	total	carbon	dioxide	emissions	to	global	economic	out-
put,	energy	intensity	of	GWP,	and	carbon	intensity	of	the	energy:	

 CO
2	

PE
CO

2
	=	——	×	——	×	GWP	 (1)

10.	 Kaya’s	 identity	 originally	 also	 differentiates	 between	 income	 effect	 (GWP	 per	 capita)	 and	 a	
population	effect.	As	an	exogenous	population	scenario	is	used	in	this	study,	we	can	neglect	this	factor.



	 PE GWP	
	

Here,	 CO
2
	 denotes	 emissions,	 PE	 primary	 energy,	 and	 GWP	 is	 gross	 world	

product.	To	facilitate	interpretation	and	to	help	track	down	the	features	underlying	
these	aggregate	effects	in	the	models,	we	summarize	endogenous	and	exogenous	
technological	change	in	the	individual	models	in	Table	2	and	attribute	the	features	
of	technological	change	to	their	likely	effects	in	terms	of	either	energy	intensity	
or	carbon	intensity.	Of	course,	the	complex	nature	of	the	models	does	not	allow	a	
definite	classification.	Still,	these	preliminary	classifications	may	serve	to	structure	
features	 of	 technological	 change	 and	 guide	 interpretation,	 for	 comprehensive	
model	descriptions	we	refer	to	the	literature	references	in	Section	3.

5.3 Decomposition Analysis

The	indicators	output,	energy	intensity	and	carbon	intensity	are	chosen	
because	they	provide	information	about	fundamental	differences	in	the	mitigation	
strategies	pursued	by	the	individual	models.	Yet	because	of	their	highly	aggregate	
nature,	they	abstract	from	the	technological	and	implementational	details	in	the	
models,	thus	allowing	quantitative	comparison	across	models.

Reduction	of	carbon	intensity	makes	it	possible	to	maintain	a	high	level	
of	energy	use,	putting	relatively	little	stress	on	the	economy	as	a	whole	(the	climate	
issue	is	‘solved’	in	the	energy	sector).	If	this	solution	is	not	feasible	(this	depends	
largely	on	availability	of	carbon-free	 technologies),	energy	 intensity	must	be	de-
creased	(implying	a	reduction	of	energy)	to	comply	with	the	climate	policy.	Forcing	
the	economy	to	use	drastically	less	energy	can	amount	to	‘choking’	it,	i.e.	it	may	
lead	 to	a	 reduction	 in	output	 (gross	world	product).	The	decomposition	analysis	
allows	quantification	of	the	contribution	of	carbon	intensity,	energy	intensity	and	
output	reduction	to	the	required	effort	of	emission	reduction.	For	the	purpose	of	this	
modeling	comparison	we	use	the	refined	Laspeyres	index	method	(Sun	1998,	Sun	
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Table 5. Average Discounted Abatement Costs
Concentration   Declining 
level 5% discount ratea 2% 1% undiscounted 

[ppm Co2] [%GWP] [%GWP] [%GWP] [%GWP] [%GWP] 

450	ppm	 0.41	 0.64	 0.71	 0.83	 0.95	 	
500	ppm	 0.16	 0.25	 0.28	 0.32	 0.37	 	
550	ppm	 0.10	 0.14	 0.16	 0.18	 0.19

a.	Declining	discounting	rates	were	adopted	from	the	Green	Book	(HM	Treasury	2003)	starting	at	
3.5%	for	the	first	30	years,	then	dropping	to	3.0%	until	year	75,	and	2.0	until	year	125.	

Table	 5	 shows	 abatement	 costs	 averaged	 over	 central	 models,	 i.e.	 we	 exclude	 models	 with	 a	
predominant	explorative	nature	and	we	restrict	the	average	to	GWP	losses	only	ignoring	the	different	
metrics	 from	 GET-LFL	 and	 DNE21+.	 That	 is,	 the	 above	 averages	 include	 ENTICE-BR.	 FEEM-
RICE-SLOW,	DEMETER-1CCS,	MIND,	and	MESSAGE.
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and	Ang	2000).	We	apply	the	decomposition	analysis	to	the	differences	of	cumula-
tive	values	between	baseline	and	policy	scenario.	Figure	3	displays	the	decomposi-
tion	of	the	centennial	CO

2
	reductions	along	Kaya’s	identity	for	different	models.

5.3.1 Mitigation Strategies to Comply with 550ppm Stabilization 

The	stacked	bars	in	Figure	3	show	the	CO
2
	savings	in	the	550ppm	policy	

scenario	 from	 the	 baseline	 cumulated	 over	 the	 century.	 Additionally,	 shading	
indicate	how	much	reductions	 in	carbon	 intensity,	energy	 intensity,	and	output	
(GWP)	contribute	to	these	savings.	

The	necessary	carbon	dioxide	reductions	differ	widely	between	models.	
The	cumulative	reductions	necessary	to	comply	with	a	550ppm	concentration	cap	
range	from	~116GtC	to	~987GtC	(in	FEEM-RICE	and	MIND,	respectively),	with	
correspondingly	great	differences	in	the	challenge	that	these	reduction	pose	for	
an	economy.11	We	stress	that	models	tend	to	agree	on	the	maximum	cumulative	
CO

2
	 emissions	 for	 a	 given	 stabilization	 scenario:	 averages	 among	 models	 for	

cumulative	 CO
2
	 emissions	 are	 589,	 783,	 and	 931	 GtC	 for	 450,	 500,	 550	 ppm	

stabilization	 scenarios,	 respectively.	The	 corresponding	 standard	deviations	 are	
72,	77,	and	92	GtC.	The	differences	in	Figure	3	stem	mainly	from	different	CO

2
	

emission	paths	 in	 the	baseline:	cumulative	CO
2	
emissions	 in	 the	baseline	range	

from	 980	 to	 2000	 GtC,	 mean	 1430,	 with	 a	 standard	 deviation	 of	 323	 GtC.	To	
account	for	such	baseline	effects,	we	will	base	our	analyses	on	measures	that	are	
relative	to	this	‘mitigation	effort’	as	much	as	possible.	

Note	 that	 baseline	 growth	 and	 CO
2
	 emissions	 seem	 unrelated	 to	 model	

types.	This	 is	not	very	surprising	when	growth	and	emissions	are	exogenous	and	
therefore	arbitrary.	In	other	models,	it	is	possible	to	calibrate	growth	and	emissions,	
e.g.	in	recursive	CGE	models,	by	a	variation	of	exogenous	model	parameters	like	
the	 total	 factor	productivity.	 In	 the	optimal	growth	models,	 total	 factor	productiv-
ity,	efficiency	of	R&D	investments,	and	elasticity	of	substitution	can	be	adjusted	to	
approximate	a	given	baseline	scenario.	However,	the	baseline	is	not	determined	by	
exogenous	parameters	alone	but	also	by	the	endogenous	features	of	technological	
change.	This	implies	that	CO

2
	emissions	of	such	models	cannot	be	fully	harmonized.	

Nevertheless,	there	is	no	reason	to	assume	that	models	with	endogenous	technologi-
cal	change	exhibit	an	inherent	trend	to	particularly	high	or	low	emission	scenarios.

A	 group	 of	 models	 (IMACLIM-R	 and	 AIM/Dynamic-Global)	 share	
similar	behavior.	Here,	the	larger	part	of	the	CO

2
	reductions	can	be	attributed	to	

lowered	energy	intensity	and	cut-backs	in	production.	They	also	show	the	largest	
cut-backs	in	production	of	all	models.	A	possible	explanation	is	that	an	inability	
to	provide	enough	carbon-free	energy	(which	would	show	up	as	carbon	intensity	
reduction)	forces	economies	to	reduce	the	energy	input	(evident	 in	the	reduced	
energy	intensity)	to	an	extent	where	it	harms	the	economy	(visible	as	GWP	reduc-

11.	 	An	obvious	 corollary	 is	 that	 emission	 reductions	 are	 necessary	 to	meet	 even	 the	550ppm	
policy	goal	despite	the	presence	of	ETC	in	the	baseline.



tions).	IMACLIM-R	resorts	to	decreasing	energy	intensity	and	reducing	GWP	be-
cause	it	does	not	incorporate	a	backstop	technology.	Here,	the	increasing	energy	
price	reduces	energy	demand	and	induces	additional	investments	in	the	electric-
ity-	and	 transport	 sectors	which	crowd	out	 the	overall	 investments	 in	 the	com-
posite	good	sector	which	are	needed	to	induce	economic	growth.	An	optimum,	
cost-effective	tax	profile	would	probably	lower	costs	compared	to	the	exogenous	
linearly	increasing	tax	imposed	in	these	scenarios.

The	RICE/DICE	models,	FEEM-RICE	and	ENTICE-BR,	show	strikingly	
similar	behavior	but	this	differs	substantially	from	the	remaining	growth	models.	
Here,	 the	 predominant	 mitigation	 strategy	 is	 to	 increase	 the	 energy	 efficiency.	
FEEM-RICE	does	allow	explicitly	 for	carbon	 intensity	 reduction	as	well	 as	 for	
energy	intensity	reduction.	However,	both	are	driven	by	the	same	index	of	techno-
logical	change.	Hence	the	ratio	of	reductions	in	carbon-	and	energy	intensities	is	
implied	by	model	structure	and	calibration,	and	it	is	not	a	degree	of	freedom	in	the	
model.	Both	FAST	and	SLOW	versions	of	the	FEEM-RICE	rely	more	on	energy	
intensity	 reduction	 than	on	carbon	 intensity	 reduction.	The	FAST	version	shifts	
the	mitigation	strategy	towards	carbon	intensity	reductions.	ENTICE-BR	explicitly	
includes	a	backstop	technology	so	one	might	expect	a	bigger	carbon	intensity	ef-
fect.	However,	carbon-free	energy	is	already	strongly	represented	in	the	baseline	
(the	share	of	renewables	rises	from	4%	in	2000	to	11%	in	2100).	The	required	CO

2
	

abatement	is	therefore	small	and	can	be	met	by	energy	efficiency	improvements	via	
R&D	investment	in	a	corresponding	knowledge	stock	and	factor	substitution.	

DEMETER-1CCS	behaves	differently.	Here,	energy	intensity	reductions	
and	carbon	intensity	reductions	make	equally	large	contributions,	while	produc-
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Figure 3. Cumulative Co2 Reduction for the 550ppm Stabilization Scenario

CO
2
	reductions	are	attributed	 to	reductions	 in	carbon	 intensity,	energy	 intensity,	and	gross	world	

product	 using	 decomposition	 analysis.	 Note	 that	 the	 550ppm	 scenarios	 are	 not	 available	 from	
MESSAGE-MACRO	and	we	therefore	display	results	from	their	500ppm	scenario	using	a	separate	
scale	on	the	second	y-axis.
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tion	cut-backs	are	kept	at	a	minimum.	A	low	emissions	baseline	and	optimistic	
assumptions	about	substitution	possibilities	and	carbon-free	energy	sources	play	a	
key	part	in	this	and	were	discussed	in	detail	in	the	preceding	section.

In	energy	system	models,	the	mitigation	strategy	relies	heavily	on	carbon	
intensity	reduction,	i.e.	CO

2
	emissions	are	mitigated	largely	by	switching	to	low	car-

bon	energy	sources.	Indeed,	all	these	models	include	options	to	build	up	a	backstop	
technology	providing	carbon-free	energy,	and	in	each	case	learning	curves	are	imple-
mented	for	some	backstop	technologies.	At	the	same	time,	a	significant	share	of	the	
CO

2
	reductions	is	attributed	to	reductions	in	energy	intensity	implying	some	sort	of	

energy	conservation.	In	DNE21+,	energy	demand	is	exogenously	given.	However,	
energy	savings	in	end-use	sectors	in	climate	policy	scenarios	are	modeled	using	long-
term	price	elasticities.	GET-LFL	implements	learning-by-doing	in	energy	conversion	
technologies	as	well	as	a	price	dependent	energy	demand	in	a	partial	equilibrium.	In	
MESSAGE-MACRO	runs,	energy	demand	is	determined	in	the	MACRO	economy	
model,	which	allows	energy	to	be	substituted	by	other	factors.	

Remembering	 that	 MIND	 includes	 a	 reduced	 form	 energy	 sector	 that	
borrows	from	bottom-up	energy	system	models,	the	similar	ratios	of	carbon	and	
energy	intensity	in	MIND	and	in	the	energy	system	models	is	no	surprise.	Rather,	
it	indicates	that	energy	system	dynamics	are	successfully	approximated	by	the	re-
duced	form	model.	Furthermore,	MIND	consistently	describes	the	macroeconomic	
environment	taking	into	account	general	equilibrium	effects.	Hybrid	models	like	
MIND	therefore	constitute	an	attempt	to	bridge	the	gap	between	top-down	and	bot-
tom-up	models	in	order	to	assess	the	importance	of	the	investment	dynamics.	

In	E3MG	most	of	the	necessary	reductions	are	attributed	to	reduced	en-
ergy	 intensity.	There	 are	 three	 routes	 by	which	 carbon	 intensity	 and	 energy	 in-
tensity	 are	 affected:	 First,	 an	 increasing	 price	 of	 carbon	 induces	 a	 reduction	 in	
energy	demand,	and	second,	a	switch	to	carbon-free	technologies	within	the	power	
and	transport	sectors.	Finally,	the	share	of	fossil	fuels	in	the	overall	energy	mix	is	
slightly	decreased	because	the	elasticity	of	substitution	in	the	energy	and	transport	
sector	is	very	low.	

5.3.2 Effects of Enhanced Climate Policies

Figure	4	 indicates	 the	change	of	 the	portfolio	of	mitigation	options,	 if	
instead	of	550ppm	CO

2
	concentration,	the	more	ambitious	level	of	450ppm	has	

to	be	achieved.	How	and	in	which	way	do	the	mitigation	strategies	change	when	
a	more	demanding	climate	protection	goal	is	pursued?	Bars	in	Figure	4	give	the	
change	of	 the	mitigation	portfolio	 in	 terms	of	 the	contributions	 to	overall	CO

2
	

reduction	in	Figure	3.	They	are	symmetrical	because	an	increased	share	of	one	
option	is	always	balanced	by	a	corresponding	decrease	in	one	or	more	other	op-
tions.	For	example,	a	20%	increase	of	the	carbon	intensity	effect	accompanied	by	
the	corresponding	20%	decrease	of	the	energy	intensity	effect	in	the	case	of	DE-
METER-1CCS	implies	that	the	contribution	of	carbon	intensity	rises	from	50%	to	
70%	whereas	the	contribution	of	energy	intensity	drops	to	30%.



Figure	4	shows	that	lowering	the	stabilization	level	has	different	impacts	
on	the	portfolio	of	mitigation	options	in	the	models.	Whilst	several	models	show	
little	 change	 (e.g.	 MIND	 and	 E3MG),	 others	 show	 substantial	 changes.	 Large	
changes	may	indicate	 that	favorable	mitigation	options	which	contribute	 to	CO

2	

abatement	in	laxer	policy	scenarios	have	been	exhausted	hence	other	options	are	
increasingly	deployed	for	more	stringent	climate	policies.	Small	changes	suggest	
that	the	greater	challenge	is	addressed	much	the	same	way	as	the	lesser	challenge.

In	DEMETER-1CCS,	the	contribution	of	carbon	intensity	reduction	in-
creases	by	nearly	20%	to	a	share	of	70%.	In	other	words,	carbon	free	energy	from	
renewables	and	CCS	now	contribute	to	mitigation	to	a	similar	extent	as	they	do	in	
energy	system	models.	The	reason	lies	in	the	fact	that	the	550ppm	scenario	in	DE-
METER-1CCS	is	relatively	close	to	the	baseline,	and	a	large	share	of	the	neces-
sary	emission	reductions	can	be	accomplished	by	energy	savings.	In	contrast,	the	
450ppm	concentration	target	requires	a	much	more	substantial	departure	from	the	
baseline,	and	the	option	of	factor	substitution	decreases	in	relative	importance.

In	 many	 models	 (ENTICE-BR,	 AIM/Dynamic-Global,	 DEMETER-
1CCS,	MIND,	DNE21+,	GET-LFL,	E3MG)	we	observe	a	similar	pattern	of	change	
in	the	portfolio:	to	achieve	450ppm	stabilization,	a	mitigation	strategy	is	chosen	that	
incorporates	a	larger	share	of	carbon	intensity	reduction	than	in	case	of	the	550ppm	
stabilization.	In	all of	these	cases,	a	carbon-free	technology	is	implemented,	and	
this	change	can	be	attributed	to	a	heavier	use	of	carbon-free	energy	in	the	energy	
mix.	Exceptions	to	this	pattern	are	FEEM-RICE	and	IMACLIM-R.	FEEM-RICE	
and	IMACLIM-R	have	in	common,	the	feature	that	they	do	not	model	a	carbon-
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Figure 4. Change of the Mitigation Strategy with More Ambitious  
Climate Policy 

The	 bars	 in	 this	 figure	 give	 the	 absolute	 differences	 between	 the	 percentages	 describing	 the	
contributions	 of	 the	 options	 in	 the	 550ppm	 and	 the	 450ppm	 scenarios.	 There	 is	 no	 result	 for	
MESSAGE-MACRO	because	only	the	500ppm	scenario	was	available.
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free	energy	technology.	This	seems	to	limit	their	potential	to	reduce	carbon	inten-
sity	compared	to	models	with	a	backstop	technology.	The	difference	is	particularly	
striking	when	FEEM-RICE	is	compared	to	ENTICE-BR.	The	two	models	share	
the	general	model	structure	of	Nordhaus’	DICE/RICE	models,	yet	only	the	latter	
incorporates	a	backstop	technology	with	the	consequence	that	it	becomes	possible	
to	increase	the	contribution	of	the	carbon	intensity	effect.

In	IMACLIM-R,	most	of	the	additional	CO
2
	reductions	are	accomplished	

by	reducing	GWP.	The	limited	potential	of	carbon-	and	energy	intensity	reduc-
tion	is	largely	exhausted	at	the	550ppm	stabilization	concentration.	The	reduction	
potentials	are	limited	due	to	capital	inertia	preventing	the	retirement	of	old	capital.	
As	before	in	the	550ppm	scenario,	a	rebound	effect	in	the	transportation	sector	
and	crowding	out	of	growth	inducing	investments	in	composite	goods	determine	
the	GWP	losses.	

5.3.3 Mitigation Strategies With and Without ITC

Figure	5	shows	how	the	portfolio	of	mitigation	options	changes	when	fea-
tures	of	endogenous	technological	change	are	disabled,	i.e.	technological	change	
is	restricted	to	the	extent	computed	in	the	baseline.	The	bars	give	the	change	in	
portfolio	(cf.	Figure	4).	Large	changes	indicate	that	including	the	possibility	for	
ITC	has	a	big	impact	on	the	mitigation	strategy.

MIND,	FEEM-RICE,	and	IMACLIM-R	show	relatively	large	changes.	
In	MIND,	the	modelers’	understanding	of	ITC	plays	an	important	part	(see	Foot-
note	9).12	When	the	common	definition	of	ITC	is	applied,	changes	in	MIND	are	
closest	to	the	changes	in	DEMETER-1CCS,	i.e.	there	are	much	smaller	changes.	
Four	models	show	little	change	(AIM/Dynamic-Global,	DNE21+,	GET-LFL,	and	
ENTICE-BR)	because	model	behavior	with	and	without	ITC	is	very	similar.

In	Figure	5,	ENTICE-BR,	FEEM-RICE,	DEMETER-1CCS,	and	MIND	
share	 the	 same	 sign	 for	 the	 change	 in	 the	 contribution	 of	 carbon	 intensity	 re-
duction.	In	these	models,	the	carbon	intensity	effect	decreases	implying	that	the	
induced	 technological	 change	works	more	 towards	decarbonization	 rather	 than	
reducing	energy	intensity.	Naturally,	this	mirrors	the	fact	that	these	models	imple-
ment	features	of	endogenous	technological	change	that	are	related	to	decarbon-
ization,	e.g.	learning	curves	for	backstop	technologies.	Two	qualifications	apply:	
MIND	also	includes	endogenous	energy	efficiency	reduction.	In	this	case,	Figure	
5	 shows	 that	 induced	 carbon	 intensity	 reductions	outweigh	 induced	 energy	 in-
tensity	reductions.	Secondly,	in	FEEM-RICE-SLOW	the	contribution	of	carbon	
intensity	decreases	from	an	11%	contribution	to	-23%	contribution.	Here,	the	av-
erage	global	carbon	intensity	is	higher	in	the	policy	scenario	without	ITC	than	in	
the	baseline	because	under	climate	policy,	a	larger	share	of	global	energy	use	is	al-

12.	 A	small	carbon	intensity	effect	remains,	because	the	fixed	amount	of	renewables	represents	
a	greater	share	of	the	(reduced)	total	energy	in	the	policy	scenario	without	ITC	than	in	the	baseline,	
which	implies	reduced	carbon	intensity	for	the	energy	mix.



located	to	countries	with	relatively	high	carbon	intensity	(U.S.,	Europe,	and	other	
high	income	countries),	thus	raising	the	global	average	relative	to	the	baseline.

Conversely,	in	E3MG,	MESSAGE-MACRO,	and	IMACLIM-R,	the	cli-
mate	policy	 induces	a	 larger	contribution	of	energy	 intensity	 reduction,	 though	
for	differing	reasons.	In	IMACLIM-R,	stabilization	levels	without	technological	
change	can	only	be	achieved	with	a	substantial	reduction	of	GWP	because	of	the	
sunk	costs	in	the	energy	system,	the	constant	rate	of	exogenous	technical	change	
and	the	absence	of	sequestration	options.	The	carbon	tax	induces	no	additional	
change	in	the	pace	of	technological	change.	The	economy	only	adapts	to	the	im-
posed	carbon	tax	through	a	changed	energy	mix	(see	the	increasing	carbon	inten-
sity	in	Figure	5	if	technological	change	is	switched	off).	Therefore	GWP	has	to	be	
reduced	in	order	to	compensate	decreasing	energy	intensity.

In	E3MG	the	key	feature	of	the	model	underpinning	the	ITC	results	is	
that	GWP	growth	has	been	made	endogenous,	with	 technological	 change	hav-
ing	a	major	influence	(via	export	equations).	However,	endogenous	technological	
change	only	has	a	small	decarbonization	effect	on	the	global	economy.	Energy	
demand	and	supply	is	very	small	in	relation	to	the	rest	of	the	economy,	around	
3-4%	of	value	added,	 and	 technological	 change	 is	 led	by	 improvements	 in	 the	
use	of	machinery	 and	 information	 technology	and	communications.	These	 im-
provements	 allow	 long-term	 growth	 to	 proceed	 by	 decreasing	 energy-intensity	
if	technological	change	is	switched	on.	The	growth	itself	ultimately	comes	from	
the	demand	by	consumers	for	goods	and	services,	promoted	by	technological	and	
marketing	innovations.	
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Figure 5. Change in Mitigation Strategies when iTC is Disabled in the 
550ppm Scenario

The	 bars	 in	 this	 figure	 give	 the	 absolute	 differences	 between	 the	 percentages	 describing	 the	
contributions	of	 the	options	 in	 the	scenarios	with	 ITC	and	without	 ITC.	For	message-macro,	 the	
500ppm	scenario	is	used	instead.
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Disabling	ITC	possibilities	increases	the	contribution	of	GWP	reduction	
to	mitigation	in	all	cases.	This	comes	as	no	surprise:	Removing	the	flexibility	of	
inducing	further	technological	change	from	the	model	makes	it	more	difficult	for	
the	models	to	reduce	CO

2
	emissions	without	cutbacks	in	production.

5.4 Timing of Mitigation options

Figure	6	depicts	the	timing	of	the	mitigation	options	(adopted	from	Gerlagh	
2006).	We	show	the	reduced	carbon	intensity	in	the	450ppm	policy	scenario	relative	
to	the	baseline	versus	the	reduced	energy	intensity	as	a	time	trajectory,	from	2000	un-
til	2100	with	bullets	set	every	20	years.	A	trajectory	where	both	options	contributed	
to	the	same	extent	would	run	along	the	bisector.	Steeper	or	gentler	slopes	indicate	a	
preference	for	carbon	intensity	reduction	or	energy	intensity	reduction,	respectively.	

Interestingly,	in	a	majority	of	models,	the	trajectory	bends	to	the	left	with	
time	indicating	that	carbon	intensity	reduction	becomes	increasingly	more	impor-
tant.	A	plausible	explanation	 is	 the	widespread	use	of	carbon-free	 technologies	
that	need	to	be	built	up	gradually	by	investments,	and	often	become	increasingly	
more	 productive	 through	 learning-by-doing.	The	 trajectory	 of	 IMACLIM-R	 il-
lustrates	well,	how	lack	of	a	backstop	technology	prevents	this	change	in	the	miti-
gation	strategy:	the	model	sticks	to	its	mainly	energy	saving	strategy	over	time.	
FEEM-RICE-SLOW	shows	 similar	 behavior:	 the	 reduction	of	 energy	 intensity	
dominates	the	reduction	of	carbon	intensity	(i.e.	the	slope	of	the	trajectory	is	less	
than	unity)	because	of	a	missing	backstop	technology.	

Similar	to	the	other	models,	FEEM-RICE	initially	increases	the	reduction	
of	both	energy	intensity	and	carbon	intensity.	While	FEEM-RICE-SLOW	retains	this	
mitigation	strategy,	FEEM-RICE-FAST	decreases	reductions	of	carbon	intensity.	As	
mentioned	before,	carbon	intensity	and	the	elasticity	of	substitution	are	driven	by	the	
same	endogenous	index	of	technological	change	in	FEEM-RICE,	and	the	relation	of	
carbon	intensity	and	energy	intensity	is	therefore	determined	by	model	structure.

In	GET-LFL	energy	demand	 is	 reduced	by	an	 increasing	energy	price,	
which	in	latter	periods	is	compensated	by	a	stronger	reduction	of	carbon	intensity.	

5.5 Energy Mix

In	the	previous	section,	we	showed	that	the	dynamics	in	the	energy	sec-
tor,	e.g.	the	development	of	a	carbon-free	technology,	have	a	key	impact	on	carbon	
abatement.	In	this	section	we	take	a	close	look	at	the	projected	development	of	the	
energy	system	and	the	role	of	ITC.

Figure	7	shows	the	development	of	the	energy	system	characterized	by	
the	 mix	 of	 energy	 sources	 at	 the	 beginning	 (2000),	 middle	 (2050)	 and	 end	 of	
the	 century	 (2100).	 Five	 energy	 sources	 are	 distinguished,	 namely	 three	 fossil	
energy	sources	 (coal,	gas,	 and	oil)	plus	 renewable	energy	sources,	and	nuclear	
fission.	If	additional	energy	sources	were	implemented	in	a	model	which	could	
not	be	subsumed	in	these	categories,	or	if	a	model	does	not	differentiate	between	



the	categories,	 the	data	 is	presented	 in	 the	categories	of	“aggregate	 fossil”	and	
“aggregate	non-fossil”	energy	sources.	Results	are	reported	in	three	columns	per	
model	giving	the	baseline	energy	mix,	the	450ppm	policy	scenario	with	ITC,	and	

Induced Technological Change		/		91

Figure 6. Trajectories in Energy intensity/Carbon intensity Space

Trajectories	start	at	the	origin	and	bullets	are	set	20	years	apart.	Figure	6a	shows	the	450ppm	
scenario	with	ITC,	Figure	6b	the	same	scenario	without	ITC.

(a)	Strategy	trajectory	with	ITC

	
(b)	Strategy	trajectory	without	ITC
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the	450ppm	scenario	without	ITC.13	In	2000,	the	three	cases	coincide.	The	models	
FEEM-RICE	and	ENTICE-BR	are	not	shown	as	 these	models	do	not	compute	
energy	 in	 Joules	but	 incorporate	 “carbon	 services”	 to	productions	measured	 in	
carbon	instead.	In	the	case	of	MESSAGE-MACRO,	results	from	the	500ppm	sce-
narios	are	displayed	instead	of	the	unavailable	450ppm	scenarios.

5.5.1 Different Formulations of the Backstop

We	have	seen	that	implementing	a	backstop	technology	can	make	a	great	
difference	in	how	models	respond	to	climate	policy	goals.	In	accordance	with	the	
literature,	we	define	a	backstop	 technology	as	a	carbon-free	 technology	whose	
usage	is	not	restricted	by	scarcity	of	non-reproducible	production	factors.	What	
makes	backstop	technologies	so	important	in	carbon	abatement?	

In	Figure	8,	we	sketch	model	behavior	given	two	different	assumptions	
about	backstop	technology.	The	price	of	energy	from	a	fossil	resource	is	indicated	
in	black,	and	an	exogenously	set	price	for	energy	from	the	backstop	technology	is	
indicated	in	light	gray.	In	contrast,	the	price	of	energy	from	a	backstop	technology	
is	plotted	in	dark	gray	for	an	endogenously	determined	backstop	price.	Solid	time	
paths	indicate	business	as	usual,	and	slashed	curves	are	induced	by	a	policy	goal.	
We	assume	that	imposing	a	policy	goal	brings	down	the	price	of	energy	from	the	
backstop	 technology	 because	 larger	 investments	 in	 carbon-free	 energy	 sources	
need	to	be	made	and	therefore	more	learning	occurs.	The	price	of	energy	from	
fossil	resources	rises	due	to	the	costs	of	the	corresponding	emissions,	e.g.	through	
carbon	taxes	or	emission	permits.

Under	climate	policy,	 the	price	of	non-backstop-technologies	(like	ex-
haustible	 resources)	 is	 rising	 sharply	 and	 intersecting	 the	 exogenous	 backstop	
price,	at	which	point	the	latter	becomes	economical	and	is	used	to	an	extent	that	
keeps	the	energy	price	at	this	same	level	(intersection	1).	

For	the	backstop	technology	that	is	explicitly	modeled,	i.e.	capacity	is	
being	build	up,	and	its	price	changes	according	to	a	learning	curve,	the	backstop	
technology	is	competitive	much	earlier	and	at	a	lower	price	(intersection	2).	The	
price	of	carbon-free	energy	declines	from	the	beginning,	 indicating	that	 invest-
ments	are	being	made	in	anticipation	of	the	later	competitiveness.	Intersection	3	
illustrates	that	this	may	even	be	the	case	in	the	absence	of	a	policy	goal.

From	these	illustrations	we	conclude	that	the	cost-decreasing	potential	of	
backstop	technologies	is	strengthened	when	lowering	prices	endogenously	is	an	
option	in	the	model,	furthermore,	if	economic	agents	possess	the	foresight	and	the	
possibilities	to	make	early	investments	in	order	to	use	this	option.

There	are	models	in	IMCP	without	a	backstop	technology	(IMACLIM-R	
and	FEEM-RICE).	As	we	have	seen,	these	models	mainly	reduce	energy	intensity	

13.	 Alternatively,	the	laxer	scenarios	could	have	been	used	to	arrive	at	much	the	same	conclusions.	
We	decided	on	the	most	stringent	case	because	here	the	observed	effects	are	more	pronounced.	The	
alternative	figures	were	omitted	due	to	limited	space.
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Figure 7. Energy System Represented by the Contributions of Different 
Energy Sources to the overall Primary Energy Consumption 

In	2050	and	2100,	the	three	bars	per	model	display	the	energy	mix	in	the	baseline	scenario,	450ppm	
policy	scenario,	and	450ppm	policy	scenario	without	ITC.	In	2000,	these	three	cases	coincide.	We	use	
darker	shading	for	energy	from	fossil	fuels	and	lighter	shading	for	carbon	free	energy	sources.	Data	
from	the	500ppm	scenario	is	shown	in	case	of	MESSAGE-MACRO.	Also	in	case	of	this	model,	the	
third	bar	represents	a	fixed	costs	scenario	and	not	the	usual	scenario	“without	ITC.”

(a)	Energy	mix	in	2000

(b)	Energy	mix	in	2050

(c)	Energy	mix	in	2100
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to	achieve	climate	protection	goals.	
Those	models	that	incorporate	carbon-free	energy	from	backstop	tech-

nologies	(i.e.	rather	than	prescribing	an	exogenous	price,	the	backstop	technology	
is	endogenous	to	these	model)	are	of	the	second	type	discussed	above	(ENTICE-
BR,	 AIM/Dynamic-Global,	 DEMETER-1CCS,	 MIND,	 GET-LFL,	 DNE21+,	
MESSAGE-MACRO,	and	E3MG).	

It	is	also	interesting	that	especially	in	GET-LFL	the	investments	in	the	
backstop	technology	are	undertaken	long	before	the	break-even-point	is	achieved.	
The	reason	is	 that	 intertemporal	optimum	decision-making	anticipates	 the	tem-
poral	spillover	effects	(learning-by-doing	or	accumulation	of	knowledge	through	
R&D).	The	model	GET-LFL	is	only	a	limited	foresight	model.	Nevertheless,	this	
feature	 implies	 that	 temporal	spill-overs	are	partially	 internalized.	 In	GET-LFL	
the	impact	of	the	backstop	technology	on	the	overall	energy	mix	is	very	modest	
because	in	both	cases	the	backstop	technology	has	gained	a	substantial	propor-
tion	of	the	energy	mix	in	the	business-as-usual	scenario	(Figure	7).	In	GET-LFL	
enough	cost	reduction	potential	has	already	been	realized	in	the	business-as-usual	
scenario.	Moreover,	the	GET-LFL	model	assumes	a	high	share	of	gas	in	the	fossil	
fuel	mix,	so	that	a	modest	reduction	in	the	energy	demand	makes	it	possible	to	
achieve	climate	protection	goals	even	without	much	ITC.	

In	DEMETER-1CCS,	ITC	has	only	a	moderate	impact	on	the	energy	mix	
for	two	reasons:	First,	the	business-as-usual	scenario	already	assumes	some	learning	
as	the	backstop	technology	is	introduced	as	a	technological	option	in	2025.	Hence	
the	cost	reduction	potential	in	the	policy	scenario	is	limited.	Second,	the	business-
as-usual	scenario	also	assumes	a	decreasing	fossil	fuels	price	path,	thus	the	marginal	
effect	of	learning-by-doing	is	limited	and	the	break-even	point	is	changed	little.

	Figure	8	also	helps	to	understand	the	role	of	technological	change	in	the	
resource	extraction	sector.	Similar	to	technological	change	in	the	case	with	back-
stop	technology,	it	could	reduce	the	growth	rate	of	the	price	of	energy	from	fossil	
fuels	by	making	more	fossil	resources	available	at	lower	costs.	If	learning-by-do-
ing	was	assumed,	the	effect	would	be	more	pronounced	in	the	baseline	than	in	the	
policy	scenario,	which	would	widen	the	gap	between	the	resource	price	with	and	
without	policy	goal.	Cost	reductions	of	fossil	fuels	due	to	technological	progress	
decreases	the	competitiveness	of	the	backstop	technology	and	therefore	increas-
es	 the	opportunity	costs	of	climate	protection.	Note,	 that	sensitivity	analysis	 in	
MIND	supports	this	qualitative	insight	–	technological	progress	in	the	extraction	
sector	is	one	of	the	most	sensitive	parameters	in	determining	the	opportunity	costs	
of	climate	protection	(Edenhofer	et.	al.	2006).	Thus,	it	would	be	interesting	to	see	
other	model	types	including	realistic	representation	of	endogenous	technological	
change	 in	 resource	 extraction	 and	 its	 effects	 on	 resource	 availability	 into	 their	
estimates	of	climate	protection	costs.

Another	aspect	is	illustrated	by	Figure	7:	as	discussed	above,	some	mod-
els	will	rather	cut	back	on	energy	use	relative	to	business-as-usual	than	provide	
carbon-free	(or	low	carbon)	energy.	This	is	evident	in	Figure	7	when	overall	en-
ergy	consumption	in	the	policy	scenarios	is	much	lower	than	in	the	baseline;	ex-



amples	are	IMACLIM-R,	and	E3MG.	Other	models	manage	to	make	almost	as	
much	energy	available	as	in	the	baseline	by	changing	to	low	carbon	or	carbon-free	
energy	 sources,	 e.g.	MIND,	DEMETER-1CCS	and	 the	 energy	 system	models.	
This	echoes	the	findings	from	the	previous	section,	and	is	in	fact	one	of	the	un-
derlying	factors	influencing	whether	a	model	implements	a	mitigation	strategy	of	
carbon	intensity	reduction	or	energy	intensity	reduction.

5.5.2 Shadow Prices, Carbon Taxes and Path Dependency

The	 price	 of	 carbon	 plays	 a	 different	 role	 in	 different	 models	 (Figure	
9	 and	 Figure	 10).	 First	 best	 models	 of	 the	 economy	 (e.g.	 MIND)	 make	 the	 im-
plicit	 assumption	 that	 all	 market	 imperfections	 may	 be	 cured.	 Hence,	 the	 result	
of	 welfare	 maximization	 in	 these	 models	 is	 a	 Pareto-efficient	 solution	 without	
any	 further	 restrictions.	 In	 these	 models,	 the	 shadow	 price	 of	 carbon	 represents	
the	social	costs	of	carbon.	Second	best	models,	e.g.	general	equilibrium	models,	
simulate	 market	 behavior,	 i.e.	 the	 model	 incorporates	 distortions	 that	 cannot	 be	
removed	 by	 policy	 instruments	 for	 institutional	 or	 political	 reasons.	The	 carbon	
tax	 in	 DEMETER-1CCS	 represents	 a	 second-best	 optimum	 in	 the	 sense	 that	 it		
is	imposed	on	the	economy	in	order	to	guarantee	the	achievement	of	the	stabilization	
level	and	a	minimum	of	welfare	losses	subject	to	the	market	distortions	that	cannot	
be	removed	by	policy	instruments	because	of	institutional	or	political	inertia.	

In	the	other	models	in	Figure	9	(IMACLIM-R	and	E3MG)	the	imposed	
tax	does	not	represent	a	second	best	optimum	because	the	carbon	tax	only	allows	
the	achievement	of	a	stabilization	 level	 irrespective	of	 its	welfare	 implications.	
The	carbon	tax	profiles	in	IMACLIM-R	and	E3MG	are	prescribed	exogenously,	
i.e.	they	are	non-optimum.
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Figure 8. Different Formulations of Backstop and Resource Scarcity
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In	the	class	of	optimal	growth	models,	the	carbon	price	is	a	dual	variable	
and	represents	the	social	costs	of	carbon	(Figure	10).	Moreover,	the	time	path	of	
carbon	follows	an	optimum	path	which	could	be	interpreted	as	an	ideal	market	for	
carbon	permits	or	as	an	imposed	optimal	carbon	tax.	In	energy	system	models	the	
carbon	price	is	also	a	dual	variable	in	an	optimization	framework.	However,	the	
carbon	price	does	not	necessarily	represent	the	total	social	costs	of	carbon	because	
of	the	omitted	feedback	loops	between	the	energy	sector	and	the	macro-economic	
environment	in	that	partial-equilibrium	framework.

The	carbon	price	also	reflects	the	effect	of	ITC	in	some	models.	In	nearly	
all	models	the	carbon	price	is	higher	in	the	scenarios	without	technological	change.	
However,	in	MIND	the	carbon	price	behaves	differently:	it	increases	exponentially	

Figure 9. Carbon Tax

Figure	9	a	shows	the	450ppm	CO2	stabilization	scenario	with	ITC,	Figure	9b	shows	the	
corresponding	scenario	without	ITC.	Values	greater	than	$800	per	ton	of	C	were	cut	off;	the	
corresponding	maximum	value	is	given.

(a)	Carbon	tax	with	ITC

(b)	Carbon	tax	without	ITC



in	the	case	without	ITC	but	it	peaks	and	decreases	if	ITC	is	switched	on.
There	is	an	interesting	pattern	in	carbon	price	development	in	some	mod-

els:	towards	the	end	of	the	century,	the	shadow	price	reaches	a	maximum	and	be-
gins	to	decline.	This	is	true	for	all	scenarios	with	ITC	in	MIND	and	in	the	450ppm	
scenario	for	DEMETER-1CCS.	If	the	price	of	the	backstop	technology	decreases	
over	time,	even	without	an	increasing	shadow	price	of	emissions	(and	fossil	fuel	
price),	the	backstop	technology	remains	competitive	with	fossil	fuels.	In	contrast	
to	a	model	with	an	exogenous	price	of	the	backstop	technology,	learning-by-do-
ing	 of	 the	 backstop	 technology	 creates	 a	 path	 dependency	 because	 its	 price	 is	
determined	endogenously	by	investments	in	learning-by-doing.	There	is	no	longer	
an	incentive	for	investors	to	promote	fossil	fuels	after	the	energy	system	is	trans-
formed	because	the	price	of	the	backstop	technology	also	declines	with	the	trans-
formation	of	the	energy	system.	The	shadow	price	in	most	energy	system	models	
increases	throughout	the	century	indicating	that	the	transformation	of	the	energy	
system	is	not	completed	before	2100.	This	may	be	in	part	because	renewables	or	
nuclear	power	(as	backstop	technologies)	are	not	able	to	substitute	fossil	fuels	un-
til	the	end	of	the	century,	due	to	bounds	on	market	share	for	renewables,	moderate	
price	increases	for	fossil	fuels	that	remain	too	low	to	trigger	a	transformation,	and	
relatively	optimistic	assumptions	about	CCS.	The	remaining	share	of	fossil	fuels	
will	turn	carbon	into	a	scarce	factor	in	production	with	a	positive	price.

	Path	dependencies	occur	if	the	transformation	to	a	carbon-free	energy	
system	is	irreversible	in	that	the	carbon-free	technologies	become	the	least	cost	
set	of	options.

5.5.3 The Specific Role of Carbon Capturing and Sequestration

Among	the	participating	models,	five	explicitly	 incorporate	 the	option	
of	 capturing	 and	 storing	 CO

2
	 emissions	 from	 combustion	 (DEMETER-1CCS,	

MIND,	 DNE21+,	 GET-LFL,	 and	 MESSAGE-MACRO).	 Figure	 11	 shows	 how	
much	CO

2
	is	captured	in	different	scenarios,	accumulated	over	the	century.	Fig-

ure	12	gives	the	corresponding	time	paths	of	carbon	capturing	and	sequestration	
(CCS)	for	one	exemplary	scenario	(500ppm	CO

2
	stabilization).

As	 one	 would	 expect,	 Figure	 11	 shows	 that	 the	 more	 challenging	 the	
climate	policy	target,	the	more	CO

2
	is	captured	and	stored.	There	is	no	CCS	in	the	

baseline,	as	capture	and	storage	of	CO
2
	is	costly	and	hence	only	becomes	econom-

ical	in	the	presence	of	climate	policy.	DNE21+	is	an	exception,	because	the	model	
includes	 an	 option	 to	 use	 CCS	 in	 the	 context	 of	 enhanced	 oil	 recovery	 which	
makes	CCS	economical	 in	 its	own	right.	The	contribution	to	overall	abatement	
(the	difference	of	cumulative	emissions	between	baseline	and	policy	scenarios)	is	
substantial,	in	particular	in	MIND,	DNE21+,	and	GET-LFL.	However,	nowhere	
is	CCS	the	dominant	mitigation	option	but	rather,	it	is	always	predicted	to	be	one	
among	many	(we	conclude	this	from	the	fact	that	captured	CO

2
	is	only	a	small	

proportion	of	the	difference	of	emissions	in	baseline	and	policy	scenario).
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Figure 10. Shadow Price of Carbon

Figure	 10a	 shows	 the	 450ppm	 scenario	 with	 ITC,	 Figure	 10b	 shows	 the	 corresponding	 scenario	
without	ITC.	In	case	of	MESSAGE-MACRO,	the	figures	show	numbers	from	the	500ppm	scenario	
instead	of	the	450ppm	scenario.	Values	greater	than	$800	per	ton	of	C	were	cut	off;	the	corresponding	
maximum	value	is	given.

(a)	Shadow	price	with	ITC

(b)	Shadow	price	without	ITC
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Figure 11. Captured Co2 and Total Co2 Emissions

The	figure	summarizes	usage	of	the	CCS	option	in	the	baseline	and	two	policy	scenarios	as	a	share	
of	total	amount	of	CO

2
.	CO

2
	that	is	not	captured	is	emitted.

As	mentioned	before,	the	models	show	agreement	on	the	allowable	car-
bon	budget	in	the	policy	scenarios,	yet	they	predict	divergent	cumulative	emis-
sions	in	the	baseline.	This	affects	the	predicted	extent	of	CCS.	DEMETER-1CCS	
and	MESSAGE-MACRO,	on	 the	one	hand	show	fairly	 low	baseline	emissions	
and	in	turn	low	predictions	for	CCS.	On	the	other	hand	the	remaining	three	mod-
els	are	faced	with	a	greater	need	to	reduce	emissions	and	resort	to	a	stronger	usage	
of	the	CCS	option.	Both	groups,	DEMETER-1CCS	and	MESSAGE-MACRO	as	
well	as	MIND,	DNE21+	and	GET-LFL	show	good	agreement	in	their	predicted	
utilization	of	the	CCS	option.

Figure	12	shows	the	development	of	CCS	over	the	course	of	the	century.	
The	five	models	show	diverse	behavior.	In	two	of	the	linear-programming	energy	
system	models	(DNE21+	and	GET-LFL)	the	capacity	of	CCS	increases	almost	
linearly	with	time	and	is	still	rising	at	the	end	of	the	century.	This	suggests	that	the	
rapidity	of	increasing	this	capacity	is	restricted,	but	no	(anticipated)	constraints	
to	the	volume	of	CCS	are	effective	yet.	GET-LFL	includes	CCS	in	combination	
with	energy	production	from	biomass.	Thus	in	GET-LFL	CCS	is	indeed	not	con-
strained	by	fossil	fuel	scarcity.

In	contrast,	CCS	in	DEMETER-1CCS	levels	off	towards	the	end	of	the	
century.	Here,	CCS	activity	has	reached	at	least	a	temporary	equilibrium.	Possibly	
the	low	emission	profiles	in	the	baseline	allow	these	models	to	reach	a	CCS	capac-
ity	that	is	both	sustainable	and	sufficient	for	the	policy	target.

MIND	and	MESSAGE-MACRO	show	yet	 another	 type	of	behavior.	 In	
MIND,	capacities	for	CCS	are	built	up	even	faster	than	in	the	energy	system	models,	
but	after	a	peak	around	mid-century	the	usage	of	CCS	declines.	Similarly,	in	MES-
SAGE-MACRO	CCS	peaks	in	2080	and	declines.	Both	models	respect	the	scarcity	
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of	fossil	fuel	resources	increasing	costs	on	the	utilization	of	CCS	in	the	long-run.	
While	CCS	is	at	a	competitive	advantage	over	renewable	energy	technologies	due	
to	cheap	fossil	fuels	early	on	in	MIND	and	MESSAGE-MACRO,	this	advantage	is	
lost	as	renewables	become	more	economical	due	to	learning-by-doing.	

Two	more	features	contribute	to	the	temporary	nature	of	CCS	in	MIND:	
readily	available	storage	sites	are	subject	to	scarcity14,	and	MIND	includes	leakage	
from	storage	sites	at	a	fixed	rate	(i.e.	the	same	percentage	leaks	from	the	storage	
site	 in	each	time	period),	 implying	that	CCS	does	not	prevent	but	only	strongly	
delays	 emissions	 into	 the	 atmosphere.	The	 leakage	 rate	 is	highly	uncertain,	 but	
it	 plays	 an	 important	 part	 in	 determining	whether	CCS	constitutes	 a	 temporary	
rather	than	a	permanent	solution.	It	would	therefore	be	instructive	to	see	whether	
other	models	confirmed	this	result	from	MIND	(Bauer	et	al.	2005),	when	leakage	
is	included.

Carbon	 capturing	 and	 sequestration	 (CCS)	 is	 different	 from	 backstop	
technologies	because	 it	 is	dependent	on	non-reproducible	 inputs,	e.g.	 fossil	 re-
sources15.	 Furthermore	 its	 extent	 is	 limited	 by	 the	 availability	 of	 storage	 sites.	
If	 all	 relevant	 intertemporal	 social	 costs	 are	 taken	 into	 account,	CCS	 is	only	a	
temporary	solution	until	 the	backstop	technology	becomes	competitive.	CCS	is	
an	end-of-pipe	 technology	allowing	 in	 the	best	case	a	welfare	 improving	post-
ponement	of	the	diffusion	of	the	backstop	technology.	In	a	theoretical	analysis,	

14.	 	In	MIND,	the	assumption	is	that	with	the	rising	utilization	of	CCS,	increasingly	long	pipelines	
are	needed	to	transport	CO

2
	to	the	storage	site.	In	general,	spatial	aggregation	within	the	models	and	

limited	knowledge	about	the	location	of	suitable	storage	sites	add	to	the	uncertainties	in	modeling	CCS.
15.	 	GET-LFL	also	includes	CCS	in	combination	with	energy	production	from	biomass.	

Figure 12. Carbon Capture and Sequestration over the Course  
  of the Century
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Edenhofer	et	al.	(2005b)	show	that	temporary	welfare	gains	from	CCS	increase	
when	(a)	the	discount	rate	is	increased,	(b)	the	energy	penalty	is	decreased,	(c)	
the	operation	and	maintenance	costs	(O&M)	are	reduced,	(c)	the	leakage	rate	of	
deposits	are	lowered,	(d)	the	capacity	of	deposits	is	increased	and	(e)	the	costs	of	
the	fossil	fuels	are	decreased.	Gains	are	also	higher	when	the	price	of	the	backstop	
technology	is	high	and/or	when	its	learning	rate	is	low.

	The	CGE	model	within	IMCP	has	not	incorporated	CCS	so	far.	In	gen-
eral,	CGE	models	could	inform	about	the	market	potential	of	CCS	under	different	
policy	scenarios.	However,	CGE	models	allowing	only	for	a	recursive	dynamic	
are	not	appropriate	for	deriving	realistic	market	behavior	because	they	implicitly	
assume	purely	myopic	investment	behavior	which	is	arguably	an	exaggerated	or	
extreme	behavior.

6. ConCLuSion

This	model	comparison	aims	to	draw	robust	results	on	ETC	by	identify-
ing	both	the	differences	between	and	the	underlying	mechanisms	of	the	multitude	
of	 participating	 models.	We	 find	 that	 the	 participating	 models	 describe	 a	 wide	
range	of	possible	futures,	with	and	without	climate	policy.	Although	there	is	no	
consensus	on	the	potential	role	of	induced	technological	change,	we	identify	cru-
cial	 economic	mechanisms	 that	drive	 ITC.	This	modeling	comparison	exercise	
demonstrates	a	large	influence	of	the	following	determinants:	

1.	 Baseline	effects
2.	 First-best	or	second-best	assumptions
3.	 Model	structure
4.	 Long-term	investment	decisions
5.	 Backstop	and	end-of-the-pipe	technologies

6.1 Baseline Effects

All	models	in	the	IMCP	incorporate	endogenous	technological	change	
in	 their	baseline,	 sometimes	 in	addition	 to	exogenous	 technological	change.	 In	
effect,	baseline	emissions	are	difficult	 to	harmonize	and	vary	widely.	Both	en-
dogenous	and	exogenous	components	contribute	to	this	mitigation	gap.	In	some	
models	optimistic	 assumptions	 about	 exogenous	parameters	 result	 in	 relatively	
low	costs	which	are	 then	due	not	 to	 induced	 technological	 change,	but	mainly	
to	exogenous	assumptions.	In	addition,	if	the	baseline	scenario	already	includes	
many	positive	effects	of	technological	change	related	to	energy	and	carbon	sav-
ings,	then	the	introduction	of	stabilization	targets	does	not	induce	much	addtional	
technological	change.	Consequently,	the	cost	difference	between	scenarios	with	
and	without	ITC	is	small.
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6.2 First Best or Second Best Assumptions

It	has	important	consequences	whether	a	first best or a second best	world	
is	modeled:	First	best	models	implicitly	assume	perfect	markets	and	the	imple-
mentation	of	optimum	policy	tools.	In	other	words,	first	best	models	preclude	so	
called	no-regret	options.	Therefore,	they	are	inherently	more	pessimistic	about	the	
costs	of	climate	protection	because	climate	protection	reallocates	scarce	resources	
which	are	utilized	in	an	optimum	way	in	the	baseline	to	climate	friendly	invest-
ments.	In	contrast,	second	best	models	assume	that	climate	policy	can	positively	
affect	market	imperfections	as	a	side	effect.	Compared	to	first	best	models	the	op-
portunity	costs	of	climate	protection	in	second	best	models	can	be	lower	and	even	
negative,	depending	on	the	design	of	policy.

6.3 Model Structure 

Previous	 model	 comparison	 exercises	 have	 shown	 that	 CGE	 models	
tend	to	calculate	higher	mitigation	costs	than	energy	system	models	or	economic	
growth	models	(Löschel	2002);	we	find	that	this	result	still	holds.	However,	the	
underlying	 reason	 is	not	necessarily	 the	model	 type,	but	 rather	 in	 assumptions	
commonly	made	by	“CGE	modelers”,	“energy	system	modelers”,	and	“economic	
growth	modelers”,	e.g.	about	foresight	and	intertemporal	behavior	of	the	agents.

It	 turns	 out	 that	 energy	 system	 models	 calculate	 low	 mitigation	 costs	
because	 they	 only	 assess	 the	 impact	 of	 mitigation	 strategies	 on	 energy	 system	
costs.	Yet	partial	equilibrium	analysis	explicitly	omits	general	equilibrium	effects	
-	 partial	 equilibrium	models	by	definition	 exclude	 feedback	 loops	between	 the	
energy	sector	and	other	sectors	of	the	economy.	In	particular,	energy	system	mod-
els	 implicitly	 assume	 that	 investments	 within	 the	 energy	 sector	 can	 be	 funded	
by	 the	economy	at	 a	 constant	 rate	of	 interest.	However,	 this	 assumption	 is	not	
justified	when	an	ambitious	climate	policy	is	imposed	in	the	system.	This	would	
depreciate	capital	stocks	in	various	sectors	and	therefore	also	change	the	return	on	
investment	in	the	energy	sector.	Consequently,	the	changed	return	on	investment	
induces	a	reallocation	of	investments	across	sectors.	This	investment	dynamic	is	a	
major	determinant	of	macroeconomic	costs	of	climate	policy	which	is	neglected	
in	 partial	 equilibrium	 analyses.	 Moreover,	 most	 energy	 system	 models	 neglect	
rebound	effects	and	the	crowding-out	implications	of	investments.	The	impact	of	
these	general	equilibrium	effects	emerge	to	be	significant.

In	contrast,	CGE	models	demonstrate	the	quantitative	impact	of	general	
equilibrium	effects.	However,	recursive	CGE	models	reduce	the	flexibility	of	long-
term	investment	behavior	remarkably.	By	assumption,	investment	shares	for	dif-
ferent	sectors	are	fixed	even	if	an	ambitious	stabilization	level	is	imposed	on	the	
economy.	Some	CGE	models	 include	a	backstop	 technology,	however,	 its	costs	
are	independent	of	the	timing	of	investments.	Mitigation	costs	are	overestimated	
because	of	the	underlying	assumptions	that	investors	are	myopic.

The	econometric	model	in	IMCP	describe	a	second	best	world.	Imper-
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fections	on	the	labor	market	and	design	of	the	carbon	tax	allow	substantial	welfare	
improvements	from	climate	policy.	The	policy	implication	is	clear.	Policy	makers	
can	claim	that	climate	policy	is	a	free	lunch.	However,	it	should	be	emphasized	
that	second	best	do	not	claim	that	climate	policy	is	the	only	way	or	the	best	way	
to	cure	market	failure.	If	better	solutions	exist,	then	climate	policy	is	no	longer	a	
free	lunch	but	has	positive	opportunity	costs.	It	seems	promising	to	calculate	these	
opportunity	costs	based	on	the	strength	of	both	frameworks.

Optimal	 growth	 models	 allow	 greater	 flexibility.	 Some	 of	 the	 optimal	
growth	models	are	already	designed	as	multi-sectoral	and	intertemporal	optimiza-
tion	models	comprising	a	reduced	form	energy	sector.	These	models	demonstrate	
the	effect	of	 full	 temporal	and	sectoral	flexibility.	 In	contrast	 to	energy	system	
models	they	do	not	assume	that	the	differences	of	the	return	on	investments	across	
sectors	can	be	ignored.	It	turns	out	that	an	appropriate	timing	of	investments	has	
the	potential	to	reduce	the	mitigation	costs	substantially.	In	particular,	 the	opti-
mum	 timing	 of	 backstop	 technologies	 (like	 renewables)	 and	 end-of-pipe	 tech-
nologies	(like	CCS)	has	a	great	potential	for	cost	reduction.	

6.4 Long-term Decision Making: Foresight and Flexibilities

Assumptions	about	long-term investment decisions	exert	a	major	influ-
ence:	The	number	and	flexibility	of	mitigation	options	has	been	shown	to	have	an	
impact	on	mitigation	costs	(Edenhofer	et	al.	2005a).	This	observation	is	confirmed	
in	this	study.	

	 Perfect	 foresight	 enables	 investors	 to	 anticipate	 necessary	 long-term	
changes	and	to	control	investment	decisions	accordingly,	including	possible	ex-
ternalities	such	as	learning-by-doing.	The	multi-sector	optimal	growth	models	in	
this	study	demonstrate	the	potential	of	perfect	foresight	to	reduce	mitigation	costs.	
Models	allowing	for	flexible	and	long-term	investment	decisions	achieve	an	equi-
librium	that	can	be	characterized	by	low	emissions	and	low	macroeconomic	costs.	
Naturally,	assuming	perfect	foresight	is	normative	rather	than	descriptive,	i.e.	its	
model	results	are	motivation	for	policies	rather	than	an	exploration	of	its	effects.	

The	assumption	of	 intertemporal	optimization	may	exaggerate	 the	po-
tential	of	ITC	to	reduce	mitigation	costs	because	the	rationality	and	foresight	of	
investors	and	entrepreneurs	implicit	in	their	intertemporal	optimization	behavior	
represents	an	optimistic	assumption.	The	assumption	of	great	foresight	of	the	ac-
tors	in	such	models	becomes	more	realistic	when	a	macroeconomic	policy	ensures	
credible	expectations.	Currently,	the	number	of	uncertainties	for	investors	is	large,	
including	uncertainty	about	emission	targets,	well-designed	international	tradable	
permit	 schemes,	 subsidies	 for	R&D	 investments,	 well-behaved	 capital	markets	
allowing	for	long-term	investments,	and	competition	and	globalization	on	the	en-
ergy	market.	A	stable	macro-economic	environment	and	clear	long-term	emission	
targets	are	crucial	for	the	transformation	of	the	energy	system.	Therefore,	a	focus	
for	post-Kyoto	discussions	beyond	2012	should	be	 the	design	of	policy	 instru-
ments	allowing	for	long-term	investments.	
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6.5 Backstop and End-of-the-pipe Technologies

Finally,	 the	 results	 depend	 on	 the	 design	 of	 backstop and end-of-pipe 
technologies:	Whether	and	how	a	carbon-free	energy	source	is	implemented	has	an	
essential	impact	on	mitigation	costs	as	well	as	on	the	mix	of	mitigation	options.	

If	 a	 model	 allows	 for	 endogenous	 long-term	 investments	 in	 backstop	
technologies	and/or	end-of-pipe	technologies,	then	mitigation	costs	are	substan-
tially	 reduced	 and	 the	 stabilization	 targets	 can	 be	 met	 without	 drastic	 declines	
in	energy	consumption.	Moreover,	available	carbon-free	energy	sources	shift	the	
abatement	strategy	towards	decarbonization	rather	than	energy	saving.	

Nearly	all	models	conclude	that	more	ambitious	climate	protection	goals	
increase	the	costs.	It	should	be	noted	that	this	is	not	a	trivial	statement	because	
due	to	 learning-by-doing,	mitigation	costs	could	be	decreased	if	 less	ambitious	
stabilization	targets	are	imposed.	However,	modeling	teams	in	IMCP	assume	that	
learning-by-doing	has	its	clear	limits	because	of	floor	costs,	barriers	of	diffusion	
and	other	market	imperfections	like	insufficient	internalization	of	intertemporal	
or	interregional	spillovers.

Over	the	past	decade	the	debate	has	been	focused	mainly	on	the	learning-
by-doing	potential	of	backstop	technologies.	However,	this	study	shows	that	this	is	
only	one	aspect.	Another	key	factor	determining	the	competitiveness	of	the	back-
stop	is	technological	progress	in	the	fossil	fuel	sector.	Assumptions	about	the	fossil	
fuel	 sector	and	 its	potential	 for	 technological	change	are	crucial	 for	determining	
costs	and	strategies.	Therefore,	further	modeling	efforts	should	also	focus	on	a	more	
realistic	representation	of	technological	progress	within	the	fossil	fuel	sector.	

Moreover,	all	models	indicate	carbon	costs	that	rise	with	time	in	the	ear-
ly	years,	and	most	maintain	this	across	the	century.	However,	some	models	which	
incorporate	backstop	technologies	and	carbon	capturing	and	sequestration	show	a	
“hump”	in	the	time	path	of	carbon	permit	prices,	i.e.	carbon	costs	peak	and	decline	
afterwards.	This	supports	what	some	technical	change	analysts	have	supposed:	expe-
rience	from	learning-by-doing	or	the	reality	of	sunk	costs	introduce	a	path	dependen-
cy	scenario	development,	and	thus	the	marginal	costs	of	maintaining	low	emission	
levels	decrease	in	the	long	term	due	to	cumulative	learning	effects	and	the	usage	of	
a	broad	range	of	mitigation	options	like	improvement	of	energy	efficiency,	the	diffu-
sion	of	backstop	technologies	and	the	temporary	use	of	end-of-pipe	technologies.

6.6 Hints for a Future Research Agenda

This	modeling	comparison	exercise	takes	a	first	step	in	assessing	the	quan-
titative	impacts	of	ITC	on	mitigation	costs	and	mitigation	strategies.	We	assess	the	
impact	of	ITC	is	isolated	by	imposing	ceteris	paribus	conditions,	i.e.	ITC	is	induced	
by	climate	stabilization	targets	in	a	setting	where	boundary	conditions	and	param-
eters	remain	unchanged.	

Beyond	the	IMCP,	we	recommend	research	expansion	two	ways.	First,	fu-
ture	model	comparisons	could	refine	the	harmonization	of	the	participating	models	
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to	a	baseline	of	central	variables	(capital	stock,	investments,	direction	of	technologi-
cal	change)	and	parameters	in	order	to	minimize	baseline	effects.	Second,	more	so-
phisticated	ceteris	paribus	scenarios	could	be	run,	e.g.	exploring	the	impact	of	single	
ITC	options	rather	than	enabling	and	disabling	all	ITC	as	it	was	done	here.	

Not	all	important	aspects	of	ITC	could	be	addressed	in	this	study.	They	
should	be	explored	in	future	model	comparisons,	e.g.	regional	spillovers.	More-
over,	while	this	study	restricted	policy	intervention	to	imposing	stabilization	levels	
(i.e.	represents	only	the	targets	approach	to	policy),	the	effects	of	different	policy	
instruments	are	neglected.	An	exercise	comparing	policy	instruments	across	dif-
ferent	model	types	could	accelerate	research	on	optimal	climate	policy	design.	

IMCP	allows	 to	set	out	a	 formulation	of	an	agenda	 to	 improve	model-
ing	design.	First,	we	have	explored	some	reasons	for	the	gaps	between	top-down	
and	bottom-up	models	and	discussed	several	models	that	begin	to	bridge	this	gap.	
These	hybrid	models	 seem	a	promising	 starting	point	 from	which	 to	develop	 a	
coherent	 framework	 incorporating	 intertemporal,	 intersectoral	 and	 interregional	
effects	of	induced	technological	change.	Second,	as	it	has	turned	out	in	the	IMCP,	
assumptions	about	long-term	investment	behavior	have	a	strong	impact	on	mitiga-
tion	costs	and	strategies.	Therefore,	experiments	with	different	assumptions	about	
long-term	expectations	and	long-term	flexibility	of	investment	behavior	would	be	
highly	valuable.	Third,	the	way	carbon-free	energy	is	made	available	has	turned	out	
to	have	a	major	influence	on	the	response	of	the	model	to	climate	policy	goals	and	
therefore	deserves	attention.	This	is	explored	by	many	models	implementing	back-
stop-	and/or	end-of-the-pipe	technologies.	We	argue	that	endogenous	technologi-
cal	change	in	the	extraction	sector	of	fossil	fuel	is	a	complementary	prerequisite	for	
a	comprehensive	understanding	of	ITC.	Many	modeling	teams	within	IMCP	have	
incorporated	learning-by-doing	of	the	backstop	technology.	In	contrast	to	this,	en-
dogenous	technological	change	in	the	exploration	and	extraction	sector	of	fossil	
fuels	has	not	received	as	much	attention.	There	is	significant	technological	change	
(e.g.	in	the	resource	extraction	sector)	with	a	potentially	strong	influence	on	the	
opportunity	costs	of	climate	protection.	A	better	understanding	of	the	underlying	
dynamics	may	therefore	both	satisfy	scientific	curiosity	and	also	provide	a	prereq-
uisite	for	improving	the	design	of	climate	policy.	
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