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Introduction : some thoughts on the issue

Climate change within the context of
climate variability

Climate impacts mediated by land use/cover
Climate impacts mediated by land

A landscape mosaic of responses
Conclusions?



Some thoughts :1

* Climate change (CC) impacts
— Comparable with those of current climate variability
— Complex, non uniform and not without feedback!
— Long term, large area
— Transient change of state (not usually rapid)

— Ecological and hydrological degradation of marginal
Mediterranean ecosystems

— Increasing spatial and temporal complexity (Patch-
Ification!)



Some thoughts :2

e Land abandonment (LA) impacts
— Also not without feedbacks
— Shorter term, smaller area
— Usually threshold change of state

— Ecological and hydrological aggradation of
Marginal Mediterreanean ecosystems

— Increasing spatial and temporal uniformity (De-
patchification!)



Some thoughts : 3

e Combined impacts
— LA and CC interact to determine impacts
— Impacts occur at arange of scales
— Impacts can be transient and threshold

— Outcome dependent on land use/cover, land, and
climate

— ‘Green’ patches responding in adifferent way to
‘brown (grey)’ patches

— A spatial and temporal mosaic of responses



Approach

— (@) understand the individual processes separ ately

— (b) integrate them within the context of dynamic,
process based spatial models

— 1 dimensional SVAT — modelling : focus on plant-
hydrology interactions across different land uses, land
types, climate changes (EFEDA, MEDALUYS)

— 2 dimensional eco-hydrological modelling at the
landscape scale : focus on aggregate (catchment)
responses to land use and climate change (MODULUYS)

— Policy support systems (PSS) — focus on process
Interaction and connectivity (MEDACTION,
DESURVEY)



PATTERN 1D/2D SVAT/Growth Model

Cellsize: 1Im

Timestep : variable
(seconds to day/night
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A two dimensional catchment model B e
PATTERNHTE29P, implemented in PCRASTER 15397 erosia
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#Thruughf1ux=Theta*tan(S1DpeDeE
#Throughflow=accufTux{Tddmap, T ruughf1uxj,

Boahead=(BDsTope* (wF+(Infil-Evap-Recharge*rockD)) A
ahead #wrong?
Boahead=1f(B0ahead gt RockD then RockD else BDahead)

Porahead=1-{{EratwF+{ {EDAhead-BatwF )220 RockD];
WE=wF+{ (Infi1-Evap-recharge) Porahead); #mm
WE=1T{wF 1t 0 then 0 else WFJ;

report Wk = if(wF/ 1000 gt soilpepth then soiloepth®l
report Theta=Theta+{(Infil-Evap-Recharge),/(soilbepth

Growth=(RUE*Theta)* (0. 95%(1-expl-0. 7¥Leafarealndex]’
Growth=Growth*0. 8; #growth resp
Maintenance=(0.015*(%(A1rTemp 150/100%%1, 570 ,/24; #q;
LeafBiomass=LeafBiomass+{Theta*crowth)- (Ma1ntenance“
ROOtEIOmass=RootBiomass+({1-Thetal)*srowthl-{Maintens
LeafEiomass=if{LeafBiomass Te 0 then 0.001 else Leaf
Cursor RootEiomass=if{RootBiomass Te 0 then 0.001 else Leaf
fme: 0 report Leafarealndex=LeafBiomass/eafDensity;

e 0 Cover=1f{Leafarealndex gt 1.0 then 1.0 else Leafare:
0
0
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But...The context of climate variation

Med. Climates extremely variable at all scales
(especially for rainfall)

Absolute rates of temporal climate variation much
greater than those of climate change (especially
for rainfall)

Since rainfall is already biologically marginal in
many areas, impacts of climate variation are
significant

Med. ecosystems highly adapted to climate
variation (plant-soil feedbacks very tight)

Thus transient climate change would have to be
sustained and significant to have an important
effect since plant system is already limited by
climate variation
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Rainfall variability : Castillala Mancha, Spain
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Variation in rainfall intensity and seasonality

Winter (djf) Spring (mam) Summer (jja) Autumn (son)
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1940-1954 1955-1969 1940-1954 1955-1969 1940-1954 1955-1969 1940-1954 1955-1969

Comparison of rainfall between periods 1940-1954 (dry) and
1955-1969 (wet), Motadel Cuervo



Climate variation : equilibrium effects on hydrological fluxes

% change from (1940-54, dry) to (1955-1969, wet) : Mota del Cuervo

Winter| Spring| Summer| Autumn, TOTAL

Inputs
Rainfall (mm/month)] +65% +8% +44% +50%| +38%
Solar radiation (W/m®)| -4.63%| +2.02%| +0.35%)| -2.32%| -0.85%

Fluxes
Infiltration (mm/month)| +63%| +7.71% +42% +49%| +37%
Evapotranspiration (mm/month)| +4.48%| +1.06% +34% +25% +13%
Sum of Recharge (mm/month)| +130%), +20.55%| +160% +156%) +93%
Soil Moisture (m°water/m’soil), +7.60%| +0.62%| +2.27%| +6.66%| +4.63%
Soil Matric Potential (m water), -30%| +3.24%| +1.08% -28%| -8.93%
Surface runoff (mm/month)| +136% +21%| +193%| +110%| +87%

Table 3. Percentage change of inputs and hydrological fluxes between a
dry period (1940-1954) and a corresponding wet period (1955-1969) for

Motadel Cuervo. These are model results.

Rainfall increases 38%, radiation decreases 1%
Infiltration, recharge and runoff and soil moisture significantly increase

Change is seasonally variable
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Climate variation : eguilibrium effects on vegetation properties

% change from (1940-54, dry) to (1955-1969, wet) : Mota del Cuervo

Inputs Winter Spring| Summer| Autumn| TOTAL

Rainfall (mm/month) +65% +8% +44% +50%| +38%

Solar radiation (W/m?) -4.63%| +2.02% +0.35%| -2.32%)| -0.85%
Vegetation

Leaf dry biomass (Kg)  +200%  +426% +338% +199% +300%

Stem dry biomass (Kg) +299% +948%  +1299% +1515% +925%

Root dry biomass (Kg)  +228%  +268% +100% +12% +135%

Dormant dry biomass (Kg) +1469% +1325%  +1820% +1965% +1626%

(woody stems)

Table 4. Percentage change of inputs and biomass components between a dry period (1940-1954) and a corresponding wet
period (1955-1969) for Quercus cocciferra at Motadel Cuervo. These are model results.

Ranfall increases 38%, radiation decreases 1%

All biomass significantly increases.
Change is seasonally variable




Significant long term vegetation variability

Shrub FT
Quercus cocciferra

Dwarf shrub FT
Thymus vulgaris
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Sipa teneccissima
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Climate sensitivity
‘Usual’ approach to climate impacts modelling

Look up climate results of latest GCM scenario

eDownscal e the results to the area of interest

*Run simulation model of processes for equilibrium or transient
climate scenaria for (1*CO,, 2*CO,)

Draw implications of the changein
process observed in terms of its likely impact

Sensitivity approach

eUnderstand the non equilibrium and transient nature of climates and
thus the process systems which they effect.
*Develop tools to understand the sensitivity of systemsto climate
within the context of other drivers (such as LUCC)
| dentify sensitive systems and insensitive systems.
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PATTERN : Hydrological sensitivity to climate
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Changein output variable per unit changein input variable,

as%

PATTERN : Plant sensitivity to climate

o

|

1.5

0.5

-0.5—

Temperature

Wet temperature

| DormantBiomas

ReproBiomass
ptBiomass
iomass

S




Climate impacts by land cover :1
Plants vs. no plants

Plant growth and soil hydrology are mutually
dependent

Plant responses mitigate soil against climate
Impacts

Highly spatially variable soil properties (such as
soil thickness) control basic plant responses to
climate

Planted areas less hydrologically dynamic (and
generally wetter) than bare patches
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Soil moisture (m3water/m3soil)
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Climate impacts by land :3
L andscape properties
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Climate impacts by land :4
Soil properties : hydrological impacts
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Soil moisture (miwater m®soil
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Soil moisture (mivwater'm3soil
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The mosaic of climate change impacts
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Conclusions: separation of climate and land
abandonment effects

Some of the most important controls are some of the most
difficult to measure spatially (e.g soil thickness, rock fragment
content, vegetation type).

Vegetation-hydrology feedbacks are critical to understanding
climate-land surface responses

Landscape response to c/imate variation is already significant

Landscape response to climate change may not be very
different to the response to climate variation and will certainly
be highly spatially variable

Thus broad-brush approaches will not work — the devil is in the
(spatial) detail. Generalisations may not be possible — one
needs to scale through a mosaic of patchy responses.





