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Outline

• Introduction : some thoughts on the issue
• Climate change within the context of 

climate variability
• Climate impacts mediated by land use/cover
• Climate impacts mediated by land
• A landscape mosaic of responses
• Conclusions?



Some thoughts :1

• Climate change (CC) impacts
– Comparable with those of current climate variability
– Complex, non uniform and not without feedback!
– Long term, large area
– Transient change of state (not usually rapid)
– Ecological and hydrological degradation of marginal 

Mediterranean ecosystems
– Increasing spatial and temporal complexity (Patch-

ification!)



Some thoughts :2

• Land abandonment (LA) impacts
– Also not without feedbacks
– Shorter term, smaller area
– Usually threshold change of state
– Ecological and hydrological aggradation of 

Marginal Mediterreanean ecosystems
– Increasing spatial and temporal uniformity (De-

patchification!)



Some thoughts :3

• Combined impacts
– LA and CC interact to determine impacts
– Impacts occur at a range of scales
– Impacts can be transient and threshold
– Outcome dependent on land use/cover, land, and 

climate
– ‘Green’ patches responding in a different way to 

‘brown (grey)’ patches
– A spatial and temporal mosaic of responses



Approach
– (a) understand the individual processes separately
– (b) integrate them within the context of dynamic, 

process based spatial models

– 1 dimensional SVAT – modelling : focus on plant-
hydrology interactions across different land uses, land 
types, climate changes (EFEDA, MEDALUS)

– 2 dimensional eco-hydrological modelling at the 
landscape scale : focus on aggregate (catchment) 
responses to land use and climate change (MODULUS)

– Policy support systems (PSS) – focus on process 
interaction and connectivity (MEDACTION, 
DESURVEY)



PATTERN 1D/2D SVAT/Growth Model 
Key Processes

Weather Generator

Processes 
Modelled/downscaled

•Rainfall

•Solar Radiation

•Net Radiation

•PAR Radiation

•Temperature

•Wind speed

Hydrology Model
Processes Modelled:
•Interception
•Infiltration 
•Overland flow
•Routing 
•Recharge 
•Evapo-transpiration
•Erosion
•Soil moisture
•Surface water 
detention

Plant Model

Processes Modelled:

•Photosynthesis and 
respiration

•Biomass Allocation

•LAI and height 
increment

•Harvesting

•Sowing

•Germination

Improving the data :

interacting :
Cellsize : 1m

Timestep : variable 
(seconds to day/night



A two dimensional catchment model
PATTERNLITE 2.5D, implemented in PCRASTER



THE MEDACTION PSS 
: NOT JUST HYDROLOGY AND VEGETATION
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Marina Baixa

Change in annual average temperature downscaled for Marina Baixa (sea level).  HADCM2gs is
represented in blue, GFDLgs in yellow and ECHAMgs in pink.  The historic record for Alicante Cuidad
Jardin is shown in purple.
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...driven by climate change 
scenaria
…with integrated CA land use 
change model



But…The context of climate variation
• Med. Climates extremely variable at all scales 

(especially for rainfall)
• Absolute rates of temporal climate variation much 

greater than those of climate change (especially 
for rainfall)

• Since rainfall is already biologically marginal in 
many areas, impacts of climate  variation are 
significant

• Med. ecosystems highly adapted to climate 
variation (plant-soil feedbacks very tight)

• Thus transient climate change would have to be 
sustained and significant to have an important 
effect since plant system is already limited by 
climate variation



0

20

40

60

80

100

120

Year

R
ai

nf
al

l m
m

 m
on

th
-1

12 month running mean

5 year running mean
10 year running mean

1940 1950 1960 1970 1980 1990

‘Dry’ period ‘Wet’ period

Rainfall variability : Castilla la Mancha, Spain



0

200

400

600

800

1000

1200

1400

19
55

19
56

19
57

19
58

19
59

19
60

19
61

19
62

19
63

19
64

19
65

19
66

19
67

19
68

19
69

Ra
inf

all
 (m

m
/ye

ar
)

average=635 mm

sd=173 mm

0

200

400

600

800

1000

1200

1400
19

40

19
41

19
42

19
43

19
44

19
45

19
46

19
47

19
48

19
49

19
50

19
51

19
52

19
53

19
54

Ra
inf

all
 (m

m
/ye

ar
)

average=459 mm

sd =139 mm

Rainfall, Mota del Cuervo

‘Wet’
period

‘Dry’
period



0

0.5

1

1.5

2

2.5

3

1940-1954 1955-1969 1940-1954 1955-1969 1940-1954 1955-1969 1940-1954 1955-1969

R
ai

nf
al

l (
m

m
/d

ay
)

50 to 100

20 to 50

10 to 20

5 to 10

2 to 5

1 to 2

0 to 1

Winter (djf) Spring (mam) Summer (jja) Autumn (son)

Comparison of rainfall between periods 1940-1954 (dry) and 
1955-1969 (wet), Mota del Cuervo

Variation in rainfall intensity and seasonality



 
% change from (1940-54, dry) to (1955-1969, wet) : Mota del Cuervo 

Winter Spring Summer Autumn TOTAL 
Inputs   

Rainfall (mm/month) +65% +8% +44% +50% +38% 

Solar radiation (W/m2) -4.63% +2.02% +0.35% -2.32% -0.85% 
Fluxes   

Infiltration (mm/month) +63% +7.71% +42% +49% +37% 
Evapotranspiration (mm/month) +4.48% +1.06% +34% +25% +13% 

Sum of Recharge (mm/month) +130% +20.55% +160% +156% +93% 
Soil Moisture (m3water/m3soil), +7.60% +0.62% +2.27% +6.66% +4.63% 
Soil Matric Potential (m water), -30% +3.24% +1.08% -28% -8.93% 

Surface runoff (mm/month) +136% +21% +193% +110% +87% 
 
Table 3.  Percentage change of inputs and hydrological fluxes between a 
dry period (1940-1954) and a corresponding wet period (1955-1969) for 
Mota del Cuervo.  These are model results.

Climate variation : equilibrium effects on hydrological fluxes

Rainfall increases 38%, radiation decreases 1%
Infiltration, recharge and runoff and  soil moisture significantly increase
Change is seasonally variable
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% change from (1940-54, dry) to (1955-1969, wet) : Mota del Cuervo 

Inputs Winter Spring Summer Autumn TOTAL 
Rainfall (mm/month) +65% +8% +44% +50% +38% 

Solar radiation (W/m2) -4.63% +2.02% +0.35% -2.32% -0.85% 
Vegetation  

Leaf dry biomass (Kg) +200% +426% +338% +199% +300% 
Stem dry biomass (Kg) +299% +948% +1299% +1515% +925% 
Root dry biomass (Kg) +228% +268% +100% +12% +135% 

Reproductive dry biomass (Kg) 
(flowers and fruits)

+2308% +1957% -4726% +3028% +2416% 

Dormant dry biomass (Kg) 
(woody stems)

+1469% +1325% +1820% +1965% +1626% 

Table 4.  Percentage change of inputs and biomass components between a dry period (1940-1954) and a corresponding wet 
period (1955-1969) for Quercus cocciferra at Mota del Cuervo.  These are model results.

Climate variation : equilibrium effects on vegetation properties

Rainfall increases 38%, radiation decreases 1%
All biomass significantly increases.
Change is seasonally variable
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Climate sensitivity
‘Usual’ approach to climate impacts modelling

•Look up climate results of latest GCM scenario 
•Downscale the results to the area of interest 
•Run simulation model of processes for equilibrium or transient 

climate scenaria for (1*CO2, 2*CO2)
•Draw implications of the change in 

process observed in terms of its likely impact

Sensitivity approach

•Understand the non equilibrium and transient nature of climates and 
thus the process systems which they effect.

•Develop tools to understand the sensitivity of systems to climate 
within the context of other drivers (such as LUCC)

•Identify sensitive systems and insensitive systems.
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Climate impacts by land cover :1
Plants vs. no plants

• Plant growth and soil hydrology are mutually 
dependent

• Plant responses mitigate soil against climate 
impacts

• Highly spatially variable soil properties (such as 
soil thickness) control basic plant responses to 
climate

• Planted areas less hydrologically dynamic (and 
generally wetter) than bare patches
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Moisture dynamics and soil thickness
-strong contrasts
-bare areas more dynamic
-veg patches wetter
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Climate impacts by land :3
Landscape properties
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Climate impacts by land :4
Soil properties : hydrological impacts
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Impact of soil rock fragment content on soil moisture

Reduces overall moisture and the temporal variation in soil moisture
Also difficult to measure/model at the landscape scale



Impact of texture on soil moisture

Affects mean soil moisture more than its variability



Impact of soil bulk density on soil moisture

Acts in a similar way to rock fragment content, affecting both mean
soil moisture and its variability



The mosaic of climate change impacts



Soil Evaporation GUADALENTIN BASIN
SPATIAL COMPLEXITY
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In such a complex system climate change effects are difficult to
disentangle from land use and many other effects.  That is work in 
progress.  The models are now well developed, the tools for their 
interpretation are still crude. 



Conclusions : separation of climate and land 
abandonment effects

• Some of the most important controls are some of the most 
difficult to measure spatially (e.g soil thickness, rock fragment 
content, vegetation type).

• Vegetation-hydrology feedbacks are critical to understanding 
climate-land surface responses

• Landscape response to climate variation is already significant

• Landscape response to climate change may not be very 
different to the response to climate variation and will certainly 
be highly spatially variable 

• Thus broad-brush approaches will not work – the devil is in the 
(spatial) detail.  Generalisations may not be possible – one 
needs to scale through a mosaic of patchy responses.




