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Imagine having three half-filled glasses of wine lined up in front of you. On the left a German 
Riesling, in the middle a French Burgundy and on the right a Chardonnay from New Zealand. 
Imagine further that you’re not much of a connoisseur, so you want to mix the three together 
to a refreshing drink, with exactly the same mixture in each glass. The trouble is, you can only 
mix the contents of two adjacent glasses at a time. So you start off by mixing the Riesling 
with the Burgundy, then you mix this mixture with the Chardonnay, then... How often do you 
need to repeat this process until you get an identical mix in all glasses? 
 
Incidentally, putting this question to a friend is a good test to see whether she (or he) is a 
mathematician or a physicist. A mathematician would answer "an infinite number of times", 
while a physicist would be well aware that there is only a finite number of molecules 
involved, so you can get your perfect drink with a finite mixing effort (only you would have 
no way to tell whether you’ve got it or not).  
 
In any case, the number of times you need to mix is very large, and this is the problem of the 
standard convection scheme of the GFDL ocean model (Cox 1984), which mixes two adjacent 
levels of the water column if they are statically unstable. The model includes the option to 
repeat this mixing process a number of times at each time step, as an iteration process towards 
complete removal of static instabilities. The minimum number of iterations needed to mix 
some of the information from layer 1 down to layer n is n-1. 
 
To avoid this problem, one needs to relax the condition that only two levels may be mixed at a 
time. To achieve complete mixing, a convection scheme is required that can mix the whole 
unstable part of the water column in one go. I have been using such a scheme back in 1983 in 
a one-dimensional mixing model for the Irish Sea, and I’m sure many other people have been 
using similar ones. Marotzke (1991) introduced such a scheme into the GFDL ocean model. It 
appears that it hasn’t been taken up as enthusiastically as it might have been, and an implicit 
convection scheme (which increases the vertical diffusivity at unstable parts of the water 
column) has been preferred because of lower computational cost (e.g. Weaver et al, 1993). 
However, it is not difficult to set up a complete convection scheme which uses less computer 
time than the implicit scheme. 
 

 The standard scheme 
 
Since the GFDL model works the grid row by row, we’ll only discuss how one grid-row is 
treated. Here’s how: 
 
(1)  Compute the densities for all grid cells in the row. Two adjacent levels are always referenced to the same 

pressure in order to get the static stability of this pair of levels. 
(2)  Mix all unstable pairs. 
(3)  Since we have now only compared and mixed "even" pairs (i.e. levels 1 & 2; levels 3 & 4; etc), repeat 

steps (1) and (2) for "odd" pairs (i.e. levels 2 & 3; levels 4 & 5; etc). 
(4)  Repeat steps (1)-(3) a predetermined number of times. 
 
There is a couple of problems here. We’ve already said that strictly speaking this never leads 
to complete mixing of an unstable water column. So the process is repeated several times at 
each time step to approximate complete mixing. But each time all grid cells are checked for 
instabilities again, even those we already found to be stable. Each density calculation requires 
evaluation of a third order polynomial in T and S. This is where the cpu time is eaten up. 
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 Marotzke’s scheme 
 
This scheme works as follows: 
 
(1)  Same as step (1) above, except that the stability of all pairs of grid cells is checked, odd and even pairs 

(so that the density of interior levels is computed twice, for two different reference pressures). 
(2)  Don’t mix yet: just mark all unstable pairs and find continuous regions of the water column which are 

unstable (neutral stability is treated as unstable). 
(3)  Mix the unstable regions. 
(4)  If there was instability in any column, repeat steps (1) to (3). Those columns which were completely 

stable in the previous round are not dealt with again in (2) and (3), but the densities are still recomputed 
for the entire grid row. Repeat until no more instabilities are found. 

 
So Marotzke relaxed the condition that only two levels are mixed at a time, and complete 
mixing will be achieved with at most k-1 passes through the water column, if k is the number 
of model levels. However, if only one grid point of a row requires n iterations, the densities 
for the entire grid row will be recomputed n times, so it still doesn’t look too good in terms of 
cpu efficiency. 
 
The fast way 
 
(1) Compute all densities like in (1) of Marotzke. 
(2) Compare all density pairs to find instabilities. 
From here on, deal column by column with those grid points where an instability was found, performing the 
following steps: 
(3) Mix the uppermost unstable pair. 
(4) Check the next level below. If it is less dense than the mixture, mix all three. Continue incorporating 

more levels in this way, until a statically stable level is reached. 
(5) Then check the level above the newly mixed part of the water column, to see whether this has become 

unstable now. If so, include it in the mixed part and go back to (3). If not, search for more unstable 
regions below the one we just mixed, by working your way down the water column comparing pairs of 
levels; if you find another unstable pair, go to (3). 

 
Note that levels which have been mixed are from then on treated as a unit. This scheme has a 
slightly more complicated logical structure; it needs a few more integer variables and if 
statements to keep track of which part of the water column we have already dealt with. The 
advantage is that we only recompute the densities of those levels we need; levels which are 
not affected by the convection process are only checked once. The scheme includes 
diagnostics which allow to plot the convection depth at each grid point. 
 
Discussion 
 
Perhaps these schemes are best discussed with an example. Imagine a model with five levels. 
At one grid point levels 2 & 3 and levels 3 & 4 are statically unstable. The standard scheme 
will, at the first pass, mix 3 & 4 and then 2 & 3. It will repeat this ncon times. Marotzke’s 
scheme will mark the unstable pairs and then mix 2-4 in one go. It will then return to this 
column for a second pass and check all levels once more. My scheme will mix 2 & 3; then 
compare the densities of 3 & 4 and (if unstable) mix 2-4 like Marotzke’s scheme. It will then 
recompute the density of level 4, compare levels 4 & 5 and mix 2-5 if unstable. Finally it will 
compare 1 & 2 again, since the density of 2 has changed in the mixing process, so level 1 
might have become statically unstable. Only the density of 2 is recalculated for this. 
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Note that Marotzke’s scheme handles the initial mixing of levels 2-4 more efficiently. 
Probably my scheme could be made slightly faster still by including the "marking" feature 
from Marotzke’s scheme (the schemes were developed independently). However, in the 
typical convection situation only levels 1 & 2 are initially unstable, due to surface cooling. In 
this situation marking doesn’t help. My scheme saves time by "remembering" which parts of 
the water column we already know to be stable, and rechecking only those levels necessary. 
 
There is a subtlety that should be mentioned: due to the non-linear equation of state the task of 
removing all static instability from the water column may not have a unique solution. In the 
example above, mixing 2 & 3 could yield a mixture with a lower density than level 4, in spite 
of 3 being denser than 4, and 2 being denser than 3 originally. In this case, my scheme would 
only mix 2 & 3, while Marotzke’s scheme would still mix 2-4. So both schemes are not 
strictly equivalent, though for all practical purposes they almost certainly are. 
 
I performed some test runs with the GFDL modular ocean model (MOM) in a two-basin 
configuration (the same as used by Marotzke and Willebrand 1991). The model has ca. 1000 
horizontal grid points and 15 levels, and was integrated for 1 year (time step 1.5 h) on a Cray 
YMP. Three different model states were used: (A) a state with almost no static instability, 
achieved by strong uniform surface heating; (B) a state with convection occurring at about 
15% of all grid points; (C) a state with convection at 30% of all grid points. The latter two 
were near equilibrium, with permanent convection. I compared the overall cpu time consumed 
by these runs with different convection schemes. The standard scheme was tried for three 
different numbers of iterations ncon. The results are summarised in the table; the overall cpu 
time is given relative to a run with no convection scheme.  
 

Convection scheme relative cpu time 

 A B C 

No convection scheme 1 1 1 

standard, ncon=1 1.13 1.13 1.13 

standard, ncon=7 1.88 1.89 1.92 

standard, ncon=10 2.25 2.27 2.32 

implicit 1.52 1.52 1.52 

complete 1.12 1.20 1.36 

 
 
I was surprised to find that the few innocent-looking lines of model code that handle 
the convection consume a large percentage of the overall processing time. The 
numbers are probably an upper limit; a model with realistic topography and time-
dependent forcing will use a bigger chunk of the cpu time for iterations in the 
relaxation routine for the stream function, so that the relative amount spent on 
convection will be lower. In my test runs, the standard scheme adds 13% cpu time 
per pass. My complete convection scheme used as much time as 1-3 iterations of the 
standard scheme, depending on the amount of convection. For zero convection it is 
as fast as one pass of the standard scheme, because it does the same job in this case. 
Additional cpu time is only used at those grid points where convection actually 
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occurs. My scheme is considerably faster than the implicit scheme, especially for 
models where convection happens only at a few grid points, or only part of the time. 
I did not have Marotzke’s scheme available for the test, but in his 1991 paper he 
mentions a comparison where the computation time with the implicit scheme was 
60% of that with his scheme. This would give Marotzke’s scheme a relative cpu time 
of about 2.5 in the table, with strong dependence on the amount of convective 
activity. 
 
Surface heat fluxes looked identical in the runs with the implicit and complete 
schemes. The standard scheme showed significant deviations, however, in the 
surface flux as well as the convective heat flux at different depths. This is not 
surprising, since the rate at which heat is brought up by convection will be reduced 
if mixing is incomplete. The runs with ncon=7 and ncon=10 still differed noticeably 
from each other, and from the complete mixing case. It is possible that this could 
affect the deep circulation, which is driven by convective heat loss, but I didn’t do 
long integrations to test this. The problem gets worse for longer time steps; with the 
standard scheme the rate of vertical mixing depends on the time step length. If 
acceleration techniques are used ("split time stepping", Bryan 1984), the final 
equilibrium could differ from one without acceleration due to this unwanted time-
step dependence. Marotzke (1991) reports a case where the choice of convective 
scheme had a decisive influence on the deep circulation. The intention of this note is 
not to examine these problems any further; it is to provide an efficient alternative. 
 
Conclusion 
 
I have described a convection scheme which completely removes static instability 
from the water column in one pass, and which is much faster than the implicit 
scheme of the GFDL model. This scheme avoids possible problems resulting from 
the inclomplete mixing in the standard scheme, while only using as much computer 
time as 1-3 iterations of the standard scheme. 
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