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The general problem

* Aim of Integrated Assessment (l1A):
—Consider the entire chain of cause-and-effect of climate
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The general problem

* Aim of Integrated Assessment (l1A):
— Consider the entire chain of cause-and-effect of climate

change
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- Assessment conducted in integrated framework
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Three paradigms
* Mathematically integrated assessment is a control problem
x="f(x,t;u)

* Evolution of system state x also depends on control vector u
* Three general approaches to handle this kind of problem:
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* Three general approaches to handle this kind of problem:
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Policy evaluation modeling

* The general approach:

- Predefine control path, e.g. GHG emissions, investment
decisions, R&D

- Evaluate consequences

* Example: IMAGE family of IA models, e.g. Rotmans et al. 1990
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The IMAGE model
* IMAGE = Integrated model for the assessment of the
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Policy evaluation modeling
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Policy evaluation modeling
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Policy evaluation modeling
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Policy evaluation modeling I

* Advantages:

- Allows use of process-based models well established in
natural sciences

- High resolution possible, very detailed assessment

- Any impact(s) that can be described by a model can be
considered

* Disadvantages:
- Search for policy recommendation by trial and error
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Policy optimization modeling

* Aim: determine optimal control path

* Two flavors: cost-benefit analysis (CBA) and cost-effectiveness
analysis (CEA)

* CEA: Determine cost-efficient controls to reach target

* CBA: Determine control path that maximizes global welfare
while considering costs and benefits of climate change

* Example: DICE / RICE models, Nordhaus 1992
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The DICE model
* DICE = Dynamic integrated climate economy

ﬁconomic submodel \

Emissions of greenhouse gases || = Economic utility over time
> Utility dependent on
economic output
> Again dependent on capital,

labor, investment

> Emissions dependent on
Output

> Cost of GHG reductions:

simple function, obtained/

Climate change

from studies

Impacts of climate change
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The DICE model
* DICE = Dynamic integrated climate economy

Emissions of greenhouse gases

‘ / Simple climate model

Climate change
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The DICE model
* DICE = Dynamic integrated climate economy

Emissions of greenhouse gases

|

Climate change /- Climate change impacts: \
> Simple function

> Function determined from
case studies

> Relates warming to costs /
benefits

— > Globally aggregated

- /

Impacts of climate change
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Policy optimization modeling
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Policy optimization modeling
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Optimization modeling Il

* Advantages:
— Comparison in single metric
- Allows determination of policy recommendations

* Disadvantages:

- Global aggregation masks winners and losers of climate
change

- Cost / benefit studies mainly for industrialized countries

- Costing of non-market impacts very uncertain, possibly
ethically non-desirable

- Discounting leads to low valuation of future impacts
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Policy guidance modeling

* Aim: determine control strategies that are compatible with
climate change policy objectives

* General approach:

- Introduce additional constraints (“guardrails”) to exclude
undesirable consequences of climate change or undesirable
climate protection strategies

- Determine set of emission strategies that violate none of the
Introduced guardrails

* Example: Tolerable Windows Approach (TWA), Bruckner et al.
1999
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Tolerable Windows Approach
* TWA = Tolerable windows approach

Emissions of greenhouse gases

—T -1

* No sub-model for emissions,
since set of allowed emission
strategies is determined
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Climate change
Impacts of climate change
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Tolerable Windows Approach
* TWA = Tolerable windows approach

Emissions of greenhouse gases

|

Climate change

Impacts of climate change

—T -1

* Simple climate model
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Tolerable Windows Approach
* TWA = Tolerable windows approach

Emissions of greenhouse gases

|

Climate change

Impacts of climate change ——

—T -1

(" Impacts represented as CIRF)
(climate impact response
function)

* Process-based models could
also be used

\_ J
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Normative Assessment:

TWA scC h em a_t| C al Iy Climate Impact (Cl): Socio-Economic Consequences (SC):

Tolerance Level Tolerance Level

* In the TWA, T A
assessment starts 1

| —
with “guardrails” ‘ '
e Guardralls define 0 0 R

tolerable climate Climate Change GHG Reduction
change impacts / Scientific Analysis:
GHG reductions Climate Change
* Analysis A
subsequently

determines set of
admissible protection

'
- GHG Reducti
strategies seHenen
Determination of all admissible climate protection paths:
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Emission corridor
* Application to

Emission corridor for AT < 2.5°C

climate change: 20 . . . .
emission
corridor
e Guardrail: Q 15
AT<25C =
e Further S
guardrailsto & 19
admissible 5
emission o
reductions © 3
0 . . . .
0 20 40 60 80 100
time t [yr]
H Thomas Kleinen Integrated Assessment of Climate

09/03/06 Change

—T -1




Summary

* Three paradigms in integrated assessment
* Distinguished by handling of control vector:
- Prescribed for policy evaluation modeling
- Optimized in policy optimization modeling
- Set compatible with constraints determined in policy guidance
modeling
* Approaches are complementary
* Neither takes uncertainty into account explicitly
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Outline

1)The paradigms of integrated assessment modeling
Policy evaluation modeling
Policy optimization modeling
Policy guidance modeling

3)Modeling impacts of climate change
Changes in flooding probability
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AT [K]

Temperature trajectories

Temperature trajectory: deterministic
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AT [K]

Temperature trajectories with nat. variability

Temperature trajectories: stochastic

Temperature tr
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Temperature trajectories with nat. variability

* Consideration of natural variability possible in stochastically
modified climate model

* Result: observing guardrail dependent on realization of

stochastic process => nonzero probability that guardrail is
exceeded

Temperature trajectory: deterministic Temperature trajectories: stochastic

AT [K]
AT [K]

0 50 100 150 200 0.50 50 100 150 200

time t [yr] time t [yr]
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Uncertainty

* Uncertainty ever present factor in entire chain of cause-and
effect of climate change

» Sensible classification for our purposes by causes of uncertainty:
1)Uncertainty caused by the freedom of human decisions
2)Uncertainty caused by natural variability
3)Uncertainty caused by insufficient knowledge

* TWA partly anticipates 1) since human decisions are not
predicted, but the maneuvering space for human decisions is
determined instead

e 2) and 3) subject of the probabilistic TWA

H Thomas Kleinen Integrated Assessment of Climate
09/03/06 Change

—T -1




Uncertainty in climate sensitivity

* Climate sensitivity i1s one of the key uncertain factors for future
climate change

o Climate sensitivity T,,., warming to be expected for doubling of
preindustrial CO, - concentration

* IPCC: Ty, €[1.5°C ,4.5°C]

o Other authors: probability distributions for T,, ., I.e. from expert
elicitations, comparisons of historical climate with model results
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Probability distributions climate sensitivity

e Andronova & Probability density functions for T, .co
. 2
Schlesinger 0.14 . . . | |
(2001) (black) —AsT
0.12F E— unitorm |
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Consequences of uncertainty climate sensitivity

* Climate sensitivity P(AT(t) > T, ), uncertain clim. sens.
Andronova &
Schlesinger

* | eads to
probability P >0
that guardrail
cannot be
observed

50 100 150 200
time t [yr]
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The probabilistic TWA

* Uncertainties imply: Extension of TWA necessary
* Deterministic guardrail for impact | defined as

| <l gpuq = PI=15,0)€10,1]

* If probabilistic uncertainty considered:
P(I <l Guard>€[o11]

* Therefore additional probability guardrail necessary

I = I Guard = P( I = I Guard>Z I:)Guard
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Solution algorithm
* Problem to be solved: generally stochastic differential inclusion

dEcF(§ ,dtedW)
with F:={f (£ ,t;u)dt+g(€,t;u)dWlue U]
under P(h(¥,t;u)<0)=P,,.4 Vt€[0,t,]
* Determination of the upper (lower) boundary of emission

corridors:
Vtelt,... t.}: max(min)E(t)

under P(h(¥,t;u)<0)=P,,.4 Vt€[0,t,]

e Standard algorithms for constrained optimization can be used
* P-guardrails can be evaluated using Monte-Carlo approach
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Results: uncertain climate sensitivity |

* Climate A&S, T  =2K P(T<T_ )>=05,0.709
sensitivity: 18 . . . .
Andronova & P uarg = 02

. 16
SChIesmger I:)Guard : 0.7

e AT < 2°C (EU- 14 x Pouarg =09 7
target)

e Further
constraints for
allowed emission
paths

* Emission
corridors for
probability
guardrails _

Pguarg=0.5,0.7,0.¢ Zeitt[yr]

CO2 Emissions [GtC]
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Results: uncertain climate sensitivity |l

* Climate Forest expert, T, =2K,P(T<T_ _)>=05,07,0.9,0.97
sensitivity Forest 20 . . . .
etal., prior EGuard - 8-?
expert elicitation ] Jouard _ 2
e AT < 2°C (EU- 15+ - G ard i
=0.97
target) "ouard

e Constraints on
emission paths
e Emission

corridors for
PGuard—O 5 0. 7 0. 9 0.9°

0.14

(,02 Emissions [GtC]
[HE
o

‘
.
.
‘
.

— AST2 '
— Funiform | [ I

0.12r — Fexpert | | *TEE

0 20 40 60 80 100
time t [yr]

Wahrscheinlichkeitsdichte
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Results: uncertain climate sensitivity Il

Wabhrscheinlichkeitsdichte

* Climate Forest uniform, T_ _ =2K,P(T<T_ )>=0.5,07
sensitivity Forest 18 . . . .
et al., prior Guard ~ '
uniforrI?l ol o Poyarg =07 |
e AT<2°C(EU- T ¥ |
target) . 12
e Constraints on % 10
emission paths 8
* Emission 5
corridors for o' °
Pouac=0.5,0.1 = 4
—fwen 2
% 20 40 60 80 100
time t [yr]
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Summary

* Uncertainty ever-present in |A modeling
* TWA can be extended to probabilistic approach

* Allows consideration of uncertainty through natural variability
and through uncertain parameters

* EU's target of max. 2°C warming very ambitious
* GHG emissions need to be reduced quickly and strongly
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Outline

1)The paradigms of integrated assessment modeling
Policy evaluation modeling
Policy optimization modeling
Policy guidance modeling

2)Uncertainty in integrated assessment
- The probabilistic Tolerable Windows Approach

3)Modeling impacts of climate change
Changes in flooding probability
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Changes in flooding probability

* Aim: develop representation of changes in flooding probability
(large river basins) in integrated assessment model

* Requirements:
- Global scale
- Low computational cost

* Model needs:
- Downscaling scheme from AT _ to 4P AEon river basin scale

- Representation of natural variability in P,E

- Hydrological model to aggregate change in P,Eto river basin
scale

e Resolution chosen: Ax = 0.5°,4t =1 month
e Min. basin size: 2.5 x 10knt
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Downscaling scheme

« |A models typically determine 4T_ only
* Changes in mean climate: pattern scaling

* Changed mean climate
T(r,m,t)= T.(r,m) + KAT,,(t)XT(r,m)
P(r,m,t)=P.(r,m)X(1+kAT, (t)xP,(r,m))

* Natural variability: deviation patterns from CRU-TS (PIK
modification) data

* Representation of nat. variability
T(r,m,t)= T.(r,m) + KATg,(t)XT,(r,m+T"'(r,m,t")
P(r,m,t)=(P.(r,m)X(1+kATyg,(t)XPy(r,m))xP"'(r,m,t’")
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Hydrological model

* Most simple model possible:
- Determine P,E at all grid points belonging to river basin
-Sum up total R = P — E A4S (¢ S=0)over all grid points

* Model validation using gauge records and historical CRU-TS(PIK)
data:

Model performance is comparably good (or rather: bad) as
performance of other models on these scales.

* Aggregation measure for setting of guardrails:

Population (2100) affected by positive change in probability of
50 year flood event Q50yr
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Climate Impact Response Function: 4P(Q_ )
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Climate Impact Response Function: 4P(Q, )

* Here: Fraction
world population
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Emission corridor: flooding

* Climate change
patterns: ECHAMS3

e guardrail: max.
20% world pop.
(2100) affected by
change in

1
P ( QSOyr) > a)

e Emission corridors
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P ( QSOyr)

H Thomas Kleinen
09/03/06

—T -1

CO, equivalent emissions [GtC]

ECHAM 3: Change in 50 yr. extreme: 20% affected
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Summary

* Climate change will change probability of large flood events in
river basins

* Changed probability can be determined using simple flooding
model consisting of downscaling scheme and hydrological
model

* This model can be used to determine CIRF for changes in
flooding probability

* Depending on changes to monsoon climate, large proportions of
population may already be affected for small climate change

* Limiting population fraction affected will be big challenge
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