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t. The integrated assessment of 
limate 
hange aims to 
onsider the entire
hain of 
ause and e�e
t of 
limate 
hange. If one looks at this 
hain in more detail,
onsiderable un
ertainty has to be a
knowledged. This un
ertainty needs to betaken into a

ount. Therefore we develop a probabilisti
 extension to the TolerableWindows Approa
h (TWA) in this paper. In the TWA, the aim is to determine the
omplete set of emission strategies that are 
ompatible with so-
alled guardrails.Guardrails are limits to impa
ts of 
limate 
hange, to 
limate 
hange itself, or tothe impa
ts of 
limate mitigation strategies. Therefore, the TWA determines the�maneuvering spa
e� humanity has, if 
ertain impa
ts of 
limate 
hange are to beavoided. Due to un
ertainty it is not possible to de�nitely ex
lude the impa
ts of
limate 
hange 
onsidered, but there will always be a 
ertain probability of violatinga guardrail. Therefore the TWA is extended to a probabilisti
 TWA that is able to
onsider �probabilisti
 un
ertainty�, i. e. un
ertainty that 
an be expressed as aprobability distribution of un
ertain parameters or un
ertainty that arises throughnatural variability.As a �rst appli
ation, temperature guardrails are imposed, and the dependen
e ofemission redu
tion strategies on probability distributions for 
limate sensitivities isinvestigated. The analysis suggests that it will be di�
ult to observe a temperatureguardrail of 2◦C with high probabilities of a
tually meeting the target.1. Introdu
tionThe tolerable windows approa
h (TWA) (Pets
hel-Held et al., 1999;Bru
kner et al., 1999; Bru
kner et al., 2003; Toth, 2003; Toth et al.,2003a; Toth et al., 2003b), also 
alled the guardrail approa
h, is anapproa
h to the integrated assessment of 
limate 
hange (IA).In the integrated assessment of 
limate 
hange an attempt is madeto evaluate the entire 
hain of 
ause and e�e
t of 
limate 
hange, rang-ing from the anthropogeneous emissions of greenhouse gases, over the
hanges in 
limate these emissions 
ause, to the impa
ts the indu
ed
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limate 
hange will have. Prototypi
ally, this is done in a 
omprehensiveand 
oordinated analysis. Sin
e this mainly involves the future 
hangesin 
limate, a strong emphasis is pla
ed on models as tools for IA.With regard to the methodology employed, three paradigms of IA
an be distinguished that di�er with respe
t to how they 
onsider the
ontrol problem of IA. Formally, IA is a 
ontrol problem with the basi
formulation
ẋ = f(x, t;u). (1)In this equation x ∈ R

n is the state ve
tor of the system, and u ∈ U is ave
tor of 
ontrol variables that 
an be freely 
hosen in U. In the 
limate
hange problem, x would be the state ve
tor of the 
oupled system ofso
io-e
onomy, 
limate system, and impa
ts of 
limate 
hange, while u
ould be the redu
tions in CO2 emissions, or the emissions themselves.With the help of this basi
 equation, three basi
 approa
hes to IA 
anbe identi�ed (adapted from Weyant et al. (1996)):
− Poli
y evaluation modelling: in poli
y evaluation modelling thephysi
al, e
ologi
 e
onomi
 and so
ial 
onsequen
es of prede�ned
limate prote
tion strategies are evaluated. Formally, a single 
on-trol fun
tion u (·) is spe
i�ed as an input, and the solutions x (·)are sought.A representative of this approa
h is the IMAGE family of models(Rotmans et al., 1989; Al
amo et al., 1998).
− Poli
y optimisation modelling: in poli
y optimisation modellingit is attempted to determine 
ontrol ve
tors in su
h a way thata prede�ned goal fun
tion is maximised. This fun
tion may bedetermined by 
osts and bene�ts of 
limate prote
tion strategiesin a single metri
, i. e. US $, but other de�nitions are possible aswell. After de�ning a goal fun
tion J(t) =

∫ t

0
c(x, t′)dt′, solutions

ũ(·) are sought, su
h that
ũ(·) = arg max

u
(t)

∫ t

0

c(x, t′)dt′ with ẋ = f(x, t;u). (2)Poli
y optimisation modelling usually takes pla
e either as 
ost-bene�t analysis or, in 
ases where additional 
onstraints are a
-knowledged, as 
ost-e�e
tiveness analysis. Typi
al representativesof this approa
h are the models DICE (Nordhaus, 1994), RICE(Nordhaus and Yang, 1996), MERGE (Manne et al., 1995), andSIAM (Hasselmann et al., 1997).
− Poli
y guidan
e modelling: poli
y guidan
e modelling aims to de-termine the 
omplete set of 
limate prote
tion strategies u(·) that
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h 3are 
ompatible with normative 
onstraints, formally de�ned as
h(x, t;u) ≤ 0. These 
onstraints may be set in order to limitthe impa
ts of 
limate 
hange, but they may also limit the 
ostsof emission redu
tion or any other element that is representedin the 
oupled assessment model. This problem 
an formally berepresented as a di�erential in
lusion (Aubin and Cellina, 1984;Deimling, 1992)

ẋ ∈ F(x, t) with F := {f(x, t;u)|u ∈ U} (3)under the 
ondition
h(x, t;u) ≤ 0. (4)Representatives of this approa
h are the safe landing analysis (Swartet al., 1998), whi
h partly ful�ls the abovementioned 
hara
ter-isti
s, and the tolerable windows approa
h (TWA) (Pets
hel-Heldet al., 1999; Bru
kner et al., 1999; Toth, 2003; Bru
kner et al.,2003).The tolerable windows approa
h (TWA) was originally proposed by theGerman Advisory Coun
il on Global Change (WBGU, 1995) duringthe preparations for the 1st Conferen
e of the Parties (COP) to theUnited Nations Framework Convention on Climate Change (UNFCCC)in Berlin. Its main obje
tive is to support 
limate 
hange de
ision-making by separating s
ienti�
 analysis from the normative setting of
limate prote
tion targets (Pets
hel-Held et al., 1999; Bru
kner et al.,2003).A major motivation for the TWA stems from Arti
le 2 of the UN-FCCC. This arti
le 
alls for the stabilisation of greenhouse gas 
on-
entrations at levels that prevent dangerous anthropogeni
 interferen
ewith the 
limate system (United Nations, 1995). The TWA is an ap-proa
h that enables an operationalisation of Arti
le 2, sin
e it aims todetermine the maneuvering spa
e humanity has, if it wants to avoid�dangerous anthropogeni
 interferen
e�. In the TWA the integrated as-sessment pro
ess starts by assessing whi
h impa
ts of 
limate 
hange, ormitigation measures, are undesirable. These impa
ts are then ex
ludedby setting normative 
onstraints, �guardrails� in the language of theTWA. In a subsequent step, the TWA then determines sets of emissionredu
tion strategies that are 
ompatible with the prede�ned guardrails.Sin
e guardrails will often be formulated with respe
t to impa
tsof 
limate 
hange, a new representation of impa
ts was developed forthe TWA. In the TWA, impa
ts 
an be represented as 
limate impa
tresponse fun
tions (CIRF) (Bru
kner et al., 1999; Füssel et al., 2003).CIRFs are derived from 
limate impa
t assessments and indi
ate how
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knerthe system under 
onsideration rea
ts to 
limate 
hange. Therefore im-pa
ts of 
limate 
hange need not be expressed in monetary terms, asin 
ost-bene�t modelling, but they 
an rather be expressed in a metri
that is suitable to the impa
t under 
onsideration.If one 
onsiders the 
hain of 
ause and e�e
t of 
limate 
hangein more detail, one has to a
knowledge that 
onsiderable un
ertaintyis present in every element of this 
hain. In IA, un
ertainty has sofar mostly been 
onsidered for parameter un
ertainty, i. e. un
ertaintyabout 
limati
 pro
esses that 
an be represented as un
ertain param-eters in models. Tol (1999), for example, has investigated probabilitydistributions for un
ertain parameters in a poli
y optimisation model,whi
h has also been done by Nordhaus (1994) and Plambe
k et al.(1997). Dowlatabadi (2000) and van Asselt and Rotmans (1996) havealso investigated parameter un
ertainties, with the latter not assumingprobability distributions for parameters, but instead investigating the
onsequen
es of di�erent 
ultural perspe
tives by di�erent a
tors on the
hoi
e of parameters. Finally, Lempert et al. (2000) have investigatedthe in�uen
e of 
limate variability in a poli
y evaluation model.With respe
t to poli
y guidan
e modelling, the 
onsideration of un-
ertainty has been limited so far. Toth et al. (2003b) have presentedemission 
orridors that arise, if parameters in the model or guardrailsettings are varied. Similarly Zi
kfeld and Bru
kner (2003) have deter-mined emission 
orridors for various probabilities of a 
ollapse of thethermohaline 
ir
ulation, as well as for di�erent 
limate sensitivities,while Kriegler and Bru
kner (2004) have investigated the sensitivityof emission 
orridors to 
hanges in various parameters. In all of these
ases, it was just possible to test 
ertain parameter settings and toderive the di�erent emission 
orridors arising out of variations of sin-gle parameters, but a more 
omprehensive treatment of un
ertaintyremains desirable.While these studies have performed the �rst steps in 
onsideringun
ertainty in the TWA, the present study aims at modifying the 
on-
eptual framework in order to enable a more 
omprehensive treatmentof un
ertainty within an extended TWA formulated in terms of proba-bilities. The extension of the deterministi
 TWA to a probabilisti
 TWAhas two advantages. First, the natural variability of 
limate and impa
ts
an be 
onsidered expli
itly. Se
ond, in 
ases of parameter un
ertainty,where probability distributions for un
ertain parameters are known, theinformation about these un
ertainties 
an be utilised fully. This allows afurther improvement in poli
y advi
e appli
ations, sin
e the un
ertainty
an be 
onsidered expli
itly, whi
h fa
ilitates its 
ommuni
ation.In Se
tion 2 the deterministi
 TWA will be reviewed, and the 
onse-quen
es of un
ertainty for the TWA will be explored. In Se
tion 3 the
Kleinen_Pets
hel-Held_20070320a.tex; 20/03/2007; 10:34; p.4



The Probabilisti
 Tolerable Windows Approa
h 5
on
eptual framework of a probabilisti
 TWA will be developed, whilea �rst appli
ation will be shown in Se
tion 4. The paper will end witha summary and some 
on
lusions in Se
tion 5.2. The TWA under probabilisti
 un
ertainty2.1. A simple 
limate modelThe 
onsideration of un
ertainty in the TWA has a number of 
on-sequen
es for the original deterministi
 TWA. In this se
tion we willexplore these 
onsequen
es. We will 
onsider two sour
es of un
er-tainty. On the one hand, we will employ probability distributions for
limate sensitivity, and on the other hand we will investigate the naturalvariability in global mean temperature.For this purpose a simple 
limate model will be used, whi
h has tobe adapted to the question investigated. The 
limate model employedwas originally published in Pets
hel-Held et al. (1999) and des
ribedin more detail by Kriegler and Bru
kner (2004). It is a redu
ed-form
limate model with very low requirements with regard to 
omputationalresour
es. These low requirements allow extensive ensemble experimentsin order to explore the 
onsequen
es of probabilisti
 un
ertainty forthe TWA. The model des
ribes the 
limate response to anthropogeni
for
ing, with CO2 emissions 
onsidered as the only greenhouse gas.The model 
onsists of a very simple 
arbon 
y
le 
oupled to a tem-perature equation. The 
arbon 
y
le approximates a pulse-responsemodel that has been 
alibrated against 
arbon 
y
le and GCM ex-periments (Maier-Reimer and Hasselmann, 1987; Hasselmann et al.,1997).The model is made up of the three di�erential equations
Ḟ = E (5)
Ċ = βE + BF − γC (6)
Ṫ = µ ln

(

C

Cpi

)

− α (T − Tpi) (7)for the 
umulative emissions F , the CO2 
on
entration C and the globalmean temperature T . Inputs and parameters to the 
limate model arethe CO2 emissions E in GtC, the atmospheri
 retention fa
tor B/ (βγ),with the CO2 emission to 
on
entration 
onversion fa
tor β, and the
arbon 
y
le response parameter γ in Equation 6. In Equation 7, thereare the parameters µ and α, and the preindustrial CO2 
on
entration
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Cpi and temperature Tpi. The parameters µ and α 
an be identi�ed as

µ =
Q2xCO2

coc × ln 2
, α =

Q2xCO2

coc × T2xCO2

(8)with Q2xCO2
the radiative for
ing at a doubling of CO2, and coc thee�e
tive o
eani
 heat 
apa
ity (Kriegler and Bru
kner, 2004). The pa-rameter values used are summarised in Table I, as well as initial (1990)and preindustrial 
onditions.Table I. Model parameter values, initial 
onditions and preindustrialvalues used in the 
limate model. Values are set following Kriegler andBru
kner with the ex
eption of coc, whi
h was 
hanged to re�e
t IPCCTAR. All values ex
ept T2xCO2

are held 
onstant in the ensembleexperiments.Parameter value Initial 
ondition value
β 0.47ppm

GtC
E0 7.9GtC

a

B 1.51 × 10−3 ppm

GtC a
F0 426GtC

γ 0.0215a−1 C0 360ppm

coc 43.6 Wa

m2K
Cpi 280ppm

T2xCO2
3K Tpi 14.6◦C

Q2xCO2
3.7 W

m2In order to be able to 
onsider the sour
es of un
ertainty under inves-tigation, the deterministi
 model presented above has to be modi�ed toa sto
hasti
 formulation in order to simulate the natural variability inglobal mean temperature. If one 
onsiders the global mean temperature
TGM , as it is simulated by large 3D GCMs, it be
omes apparent thatthis quantity displays a 
ertain variability. Collins et al. (2001) reportthat the global mean temperature in the GCM HadCM 3 has a standarddeviation of 0.12K, whereas TGM in HadCM 2 had a standard deviationof 0.13K. A sto
hasti
 extension to the 
limate model has therefore beenimplemented. This extension reprodu
es the natural variability in globalmean temperature TGM shown by HadCM 3.In order to 
orre
tly simulate the natural variability in TGM , Eq. 7has to be modi�ed to a sto
hasti
 formulation

Ṫ = µ ln

(

C

Cpi

)

− α (T − Tpi) + σξ. (9)In this equation, the sto
hasti
 extension is the term σξ. It 
onsists of awhite noise pro
ess ξ with standard deviation σ. By using this extensionto the original model, the varian
e of TGM 
an be reprodu
ed.The se
ond un
ertain element that will be investigated is the un-
ertainty in 
limate sensitivity. Considering Eq. 8 it is obvious that a
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h 7probability distribution for T2xCO2
results in a probability distributionfor α.2.2. Probabilisti
 un
ertaintyThere have been numerous attempts at 
lassifying the un
ertaintiesinherent in the 
oupled system of humanity and 
limate. Some of theseattempts are based on more general theories and 
on
epts. In 
ontroltheory, for example, one distinguishes aleatory and epistemi
 un
er-tainty (Paté-Cornell, 1996). This 
lassi�
ation 
an be found in the inte-grated assessment of 
limate 
hange, e. g. in publi
ations by Rotmansand van Asselt (2001), who distinguish between internal variability ofthe system on the one hand, and unknowns on the other hand. On thebasis of these 
oarse 
ategories, one 
an distinguish di�erent 
auses ofun
ertainty, e. g. random 
han
e inherent in natural pro
esses, or thediversity of human values and behaviour.In another typology, Toth et al. (2003b) distinguish between un-
ertainties in pro
esses, un
ertainty about the predi
tions of futuredevelopment, and un
ertainty about values and politi
al de
isions. This
lassi�
ation of un
ertainties is based on the distin
tion between thedi�erent relations to the de
ision-making pro
ess for 
limate prote
tionstrategies.For the purposes of this study, three types of un
ertainty in theintegrated assessment of 
limate 
hange 
an be distinguished:1. un
ertainty that is 
aused by natural variability,2. un
ertainty 
aused by insu�
ient knowledge, and3. un
ertainty 
aused by the unpredi
tability of human so
iety.The latter un
ertainty is in part anti
ipated by the TWA, sin
e theTWA doesn't try to predi
t the future development of human so
iety.By determining the set of emission redu
tion strategies that is 
om-patible with the prede�ned guardrails it maps the �maneuvering spa
e�humanity has, if 
ertain impa
ts are to be avoided. Therefore the un-
ertainty about the future development of human so
iety is 
onsideredby not making predi
tions about it.The other two 
auses of un
ertainty 
an be 
onsidered in a TWAthat is extended to a probabilisti
 framework. Here the employment ofa probabilisti
 framework may improve on the deterministi
 TWA.Un
ertainty 
aused by insu�
ient knowledge is impossible to 
on-sider 
omprehensively, sin
e unknown fa
tors 
annot be represented inmodels. What 
an be 
onsidered in a pra
ti
al appli
ation is un
ertainty
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knerthat 
an be expressed as un
ertainty in model parameters. If all thatis known about an un
ertain parameter is a possible range of values,then a probabilisti
 approa
h will not help mu
h in 
onsidering it, butif a probability distribution of model parameter values is known, thena probabilisti
 TWA 
an help in 
onsidering the un
ertainty.This 
ase of un
ertainty through insu�
ient knowledge, as well asun
ertainty that arises from natural variability, 
an also be 
lassi�edas probabilisti
 un
ertainty. Probabilisti
 un
ertainty is the term weare using for un
ertainty that either arises through the 
onsiderationof natural variability, whi
h leads to a probability distribution for theout
omes of an ensemble of experiments, or un
ertainty that 
an berepresented by the 
onsideration of probability distributions for un
er-tain parameters. While the underlying 
auses of these two sour
es ofun
ertainty may be di�erent, the 
onsideration of them leads to similarexperiments and results. Both types of un
ertainty 
an be 
onsideredin Monte-Carlo experiments (Press et al., 1997) � in the �rst 
asesampling from di�erent realisations of the sto
hasti
 pro
ess, and inthe se
ond 
ase sampling from the probability distribution of un
ertainparameters �, and both types of un
ertainty lead to similar resultsfor experiments. Experiments do not return a single solution, but aprobability distribution of experiment out
omes.This kind of un
ertainty is the domain of the probabilisti
 TWA. Theappli
ation of the probabilisti
 TWA will be demonstrated by 
onsider-ing un
ertainty in the 
limate sensitivity, and by 
onsidering un
ertaintyarising through the natural variability of global mean temperature.2.3. Un
ertainty in 
limate sensitivityOne of the key un
ertain fa
tors in the assessment of 
hanges in 
limateis the equilibrium 
limate sensitivity T2xCO2
. The equilibrium 
limatesensitivity, also simply 
alled 
limate sensitivity, is the 
hange in globalmean temperature that results when the 
limate system, or a 
limatemodel, attains a new equilibrium after a for
ing 
hange resulting from adoubling of the atmospheri
 CO2 
on
entration (Cubas
h et al., 2001).There are various estimates for T2xCO2

.The estimate of 
limate sensitivity published by the IPCC is therange T2xCO2
∈ [1.5◦C, 4.5◦C] (Cubas
h et al., 2001), without anyfurther spe
i�
ation of probability distribution or most probable value.However, a few estimates of a probability distribution for T2xCO2

exist,whi
h were derived by various means, e. g. the estimates by Morgan andKeith (1995), Webster and Sokolov (2000), Andronova and S
hlesinger(2001), Gregory et al. (2002), and Forest et al. (2002). Of these dis-
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h 9tributions, the ones by Andronova and S
hlesinger (2001) and Forestet al. (2002) are 
onsidered here.Andronova and S
hlesinger (2001) used a simple 
limate/o
ean model,the observed near-surfa
e temperature re
ord, and a bootstrap te
h-nique to obje
tively estimate a probability density fun
tion (pdf) for
T2xCO2

. Their 
limate model was able to 
onsider �ve di�erent me
h-anisms for radiative for
ing. These were the radiative for
ing by allgreenhouse gases other than tropospheri
 ozone, the for
ing by tropo-spheri
 ozone, the dire
t and indire
t for
ing by sulfate aerosols, thefor
ing by vol
anoes, and the 
hanges in for
ing due to 
hanges in solarirradian
e. They 
onsidered 16 di�erent 
ombinations of these for
ingme
hanisms. For ea
h 
ombination of for
ing me
hanisms, they deter-mined the 
hanges in global mean near-surfa
e temperature resultingfrom the for
ing me
hanisms and 
ompared them to observations. In ad-dition, they 
onsidered the un
ertainty arising from natural variabilityby using a bootstrap-resampling approa
h.Thus they derived probability distributions for the 
limate sensitivity
T2xCO2

. The probability distributions for the 16 di�erent 
ombinationsof for
ing me
hanisms roughly fall into three 
lasses. The 
lass T1 doesnot 
onsider the radiative for
ing by aerosols, whereas the other two
lasses do. The T2 and T3 
lass estimates di�er in their 
onsideration ofsolar for
ing. While the T2 
lass of estimates 
onsiders the solar irradi-an
e for
ing, the T3 
lass does not. Sin
e the T1 
lass of estimates doesnot 
onsider the aerosol for
ing and it's maximum in probability densityis at the very low end of the IPCC range, it will not be 
onsidered here,but the T2 and T3 
lass estimates will be 
onsidered.Finally, Forest et al. (2002) derived joint probability distributions forthree un
ertain properties of the 
limate system. They used an optimal�ngerprinting approa
h for 
omparing simulations of a 
limate modelof intermediate 
omplexity with three diagnosti
s of re
ent 
limate ob-servations derived from the upper-air temperature re
ord, the surfa
etemperature re
ord, and the re
ord of o
ean temperatures. In 
limatemodel simulations, they systemati
ally varied the 
limate sensitivity,the rate of heat uptake by the deep o
ean, and the strength of the an-thropogeni
 aerosol for
ing in order to assess, whi
h simulations mat
hthe observed 
limate re
ord. By using a Bayesian updating s
heme,they utilised ea
h diagnosti
 to update the probability distribution for
T2xCO2

, starting from either an expert prior distribution or a uniformprior distribution. Both of the posterior distributions published will be
onsidered.The probability distributions 
onsidered are shown in Fig. 1. Theestimated probability distributions by Andronova and S
hlesinger areshown as a 
ontinuous line for the T2 
lass of estimates and as a dashed
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Figure 1. Estimates for 
limate sensitivity T2xCO2
by Andronova and S
hlesinger(A/S T2 and T3), and Forest et al. (F uniform and expert).line for the T3 
lass, while the estimates by Forest et al. are shown asa dash-dotted line for the uniform prior and as a dotted line for theexpert prior. While both distributions by Forest et al. have the maxi-mum probability density at 2.15K, the maximum in probability densityis lo
ated at 3.0K for the Andronova and S
hlesinger T2 distributionand at 4.75K for the T3 distribution. For the Forest et al. estimatesprobability density is higher than Andronova and S
hlesinger's at lowvalues of T2xCO2

, while it doesn't rea
h as large values at high T2xCO2
.The pdf generated from a uniform prior assigns higher probabilities tohigh values of T2xCO2

than the one generated from an expert prior.The Andronova and S
hlesinger T3 distribution gives 
omparativelyhigh probabilities to high values of T2xCO2
, with values as large as15K still getting non-zero probabilities. Su
h high 
limate sensitivitiesappear to be quite improbable, but they 
annot be ruled out with
ertainty so far, as was re
ently shown by Stainforth et al. (2005).Stainforth et al. (2005) performed a large ensemble experiment witha GCM, where they varied a number of un
ertain parameters. The
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limate sensitivities produ
ed by this ensemble were in a range from1.9 to 11.5K, highlighting that su
h high 
limate sensitivities 
an alsobe reprodu
ed by GCMs and 
annot be ruled out with 
ertainty.In the future, it may be possible to narrow the range of possi-ble 
limate sensitivities by 
onstraining 
limate sensitivity with proxydata from 
limate states other than the 
urrent, e. g. the last gla
ialmaximum. For example, S
hneider von Deimling et al. (2006) re-port that they 
an ex
lude 
limate sensitivities > 4.7◦C, sin
e theseare in
onsistent with 
urrent understanding of the 
limate at the lastgla
ial maximum. As is apparent from a 
omparison with Fig. 1, theseestimates may redu
e the un
ertainty in 
limate sensitivity.2.4. Consequen
es of un
ertainty for the TWAThe presen
e of probabilisti
 un
ertainty has profound 
onsequen
esfor the 
on
eptual framework of the TWA, as we will explore in thefollowing paragraphs.
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Figure 2. Consequen
es of natural variability for the TWA. Left: One 
limate tra-je
tory observing guardrail ∆T ≤ 2.5K in deterministi
 TWA. Shown are 
hange inglobal mean temperature ∆T (solid line) and CO2 emissions E (dashed line). Right:Three realizations of the same CO2 emissions traje
tory from a sto
hasti
 
limatemodel. While the guardrail is observed in the deterministi
 system, this depends onthe realization of the sto
hasti
 pro
ess in the sto
hasti
 system. Therefore there issome probability of ex
eeding the guardrail in the sto
hasti
 
ase.As a referen
e for 
omparison, we determined one emission traje
torythat would lead to the observation of a temperature guardrail ∆T ≤
2.5K in the deterministi
 model setup, i. e. the temperature 
hange ∆Tin the deterministi
 model was limited to ∆T = 2.5K.The emission traje
tory is shown in Fig. 2, on the left, along withthe 
orresponding temperature traje
tory. The emissions, shown as adashed line, rise qui
kly at �rst, rea
hing a maximum at time t = 38,and are then redu
ed in an exponential de
ay. The temperature 
hange

Kleinen_Pets
hel-Held_20070320a.tex; 20/03/2007; 10:34; p.11



12 T. Kleinen, G. Pets
hel-Held, and T. Bru
kner
50 100 150 200

0

1

2

3

4

5

6

7
0.999

0.99

0.9
0.75

0.5
0.250.1

0.01

Time [yr]

T
G

ua
rd

 [K
]

P(∆T(t) ≤ T
Guard

), uncertain ∆T
2xCO

2

0 2 4 6
0

1000

2000

3000

4000

5000

6000

7000

co
un

t

∆T [K]

∆T at t = 99, uncertain ∆T
2xCO

2

∆T det.
∆T pdf

Figure 3. Left: Histogram of temperature 
hange ∆T at time t = 99 with T2xCO2sampled from the Andronova and S
hlesinger T2 probability distribution. Right: Cu-mulative probability of temperature 
hange ∆T (t) ex
eeding TGuard over the timehorizon of the integration, shown as 
ontours. Climate sensitivity is sampled fromthe T2 probability distribution by Andronova and S
hlesinger, natural variability isnot 
onsidered.
∆T , shown as a solid line, also rises initially, until maximum warmingis rea
hed at time t = 99. Afterwards, temperature falls slowly, buttemperature does not rea
h a stationary state at the end of the timehorizon. As a temperature guardrail limiting ∆T to ∆T = 2.5K wasset, the maximum temperature 
hange at t = 99 is ∆T = 2.5K.If un
ertainty from the natural variability of 
limate is a
knowl-edged, this situation 
hanges. If the sto
hasti
 
limate model that re-produ
es the natural variability of the global mean temperature, asin Equations 5 to 9, is driven by the same emission traje
tory, thetemperature guardrail will not ne
essarily be observed. The 
limatetraje
tories stemming from three realizations of the sto
hasti
 pro
ess
ξ are shown on the right of Fig. 2. It is obvious that not all realizationsof the sto
hasti
 pro
ess observe the guardrail. While the realizationshown in light grey observes the guardrail, the realization shown inbla
k grossly violates the guardrail, and the realization shown in darkgrey slightly violates it. This 
learly demonstrates that it is dependenton the realization whether the guardrail is observed in the presen
e ofvariability. Therefore a 
ertain probability exists, that the guardrail isviolated, whi
h 
an be determined from the 
umulative distribution.A small violation of the guardrail, as in the 
ase of the temperatureguardrail shown in Fig. 2, may not be relevant to the larger problemat hand. In the 
ase of the global mean temperature, a slight deviationwill probably not be all that important, and the guardrail 
ould alsobe de�ned in terms of e. g. ten year averages. On the other hand thereare impa
ts of 
limate 
hange, where the variability of 
limati
 variables
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h 13plays a major role. Mearns et al. (1997) have shown that 
hanges in thevariability of temperature and pre
ipitation may strongly a�e
t agri
ul-tural yield. Similarly, 
hanges in extreme pre
ipitation events may 
ause
hanges in �ooding probabilities (Be
ker and Grünewald, 2003; Booij,2002; Shabalova et al., 2003). In these 
ases, the variability plays amajor role and therefore needs to be taken into a

ount in guardrail def-initions. The need for the 
onsideration of natural variability thereforedepends on the impa
t 
ategory under 
onsideration.The se
ond sour
e of un
ertainty we are 
onsidering is un
ertainty in
limate sensitivity. A probability distribution for the 
limate sensitivity
T2xCO2

now leads to a probability distribution for the parameter α inEq. 7. In order to explore the e�e
t of this un
ertainty on the TWA,a Monte-Carlo s
heme is employed to sample from the T2 probabilitydistribution estimate by Andronova and S
hlesinger (2001).The 
limate model is driven by the emission s
enario shown in Fig. 2and the probability distribution is determined for temperature 
hange
∆T at time t = 99, whi
h is the time of maximum warming in thedeterministi
 s
enario shown in Fig. 2. As shown in Fig. 3, left handside, the temperature 
hange ∆T varies widely around the temperatureguardrail TGuard = 2.5K assumed in the deterministi
 s
enario, andmost of the probability distribution is lo
ated at higher temperatures.The temperature 
hange at the time of maximum warming, whi
h varieswith the respe
tive 
limate sensitivity, ranges from 0.72 K, relative tothe preindustrial 
limate, to a warm 7.27 K rea
hed at t = 200 for thelargest 
limate sensitivity in the ensemble.The 
onsequen
es of this un
ertainty in 
limate sensitivity for theTWA are profound. Fig. 3, right hand side, shows the 
umulative dis-tribution of temperature 
hange ∆T over the time horizon of the inte-gration. The 
ontour plot shows P (∆T (t) ≤ TGuard), the probability ofstaying below the temperature guardrail TGuard, shown on the abs
issa,at time t. A

ording to this �gure, the deterministi
 guardrail of 2.5Khas a minimum probability P ≈ 0.44 of being observed at t ≈ 100.Finally, it is also possible to 
onsider both sour
es of un
ertaintyby using Monte-Carlo te
hniques. In this 
ase, one samples from theprobability distribution for 
limate sensitivity and from the realiza-tions of the sto
hasti
 pro
ess representing natural variability. Sin
e
P (∆T (t) ≤ TGuard), the 
umulative distribution fun
tion, is virtuallyidenti
al to the one shown in Fig. 3, it is not shown here. In this 
ase themaximum probability of ex
eeding the deterministi
 guardrail is about
P ≈ 0.44 at time t = 97.
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14 T. Kleinen, G. Pets
hel-Held, and T. Bru
kner3. The probabilisti
 TWA3.1. Probabilisti
 guardrailsAs shown in the last se
tion, the deterministi
 TWA is not able tofully 
ope with the un
ertainty that is inherent in the 
limate 
hangeproblem. The 
onsideration of un
ertainty leads to a 
ertain probabilitythat a guardrail will be violated, even though it may be observed in thedeterministi
 
ase.In order to address this problem, the TWA therefore has to beextended to a probabilisti
 TWA. This has two 
onsequen
es:1. the 
on
eptual framework of the TWA has to be extended in su
ha way, that probabilities 
an be 
onsidered, espe
ially with regardto guardrails2. the model framework and solution algorithms have to be adaptedto a probabilisti
 formulation.We will address the �rst point in this se
tion, and we'll 
ome ba
k tosolution algorithms in Se
tion 3.2.Se
tion 2.4 has shown that deterministi
 guardrails under probabilis-ti
 un
ertainty lead to a non-zero probability that the guardrail will beviolated. Therefore the 
on
ept of a guardrail used in the TWA has tobe extended in su
h a way that probabilities 
an be 
onsidered.
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Figure 4. Con
eptual visualisation of the relation of 
limate 
hange and tolerabilityof impa
t. Left: deterministi
 guardrail. Right: probabilisti
 guardrail.In the deterministi
 TWA, a guardrail is envisioned as a binaryde
ision. A de
isionmaker de
ides, whi
h impa
t level is tolerable andwhi
h is intolerable, e. g. Bru
kner et al. (1999). The guardrail in thedeterministi
 TWA is then pla
ed at the impa
t level where the transi-tion between tolerability and intolerability takes pla
e. Su
h a situation
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h 15is sket
hed in the left hand panel of Fig. 4. In this 
ase the TWA aimsto insure I ≤ IGuard, with I the impa
t under 
onsideration and IGuardthe impa
t guardrail, whi
h is set, where the tolerability of I 
hangesfrom 1 to 0. Expressed in terms of probabilities, the deterministi
 TWAtherefore assumes the probability of observing the guardrail to be
P (I ≤ IGuard) ∈ {0, 1} : (10)The probability of staying below the guardrail is either zero or one.If there is un
ertainty, whether a 
ertain impa
t level is tolerableor not, the pla
ement of the guardrail be
omes a grave problem. One
ould either pla
e the guardrail at the highest impa
t where one is still
ertain that the impa
t is tolerable, or one might pla
e the guardrail atthe lowest impa
t where one is 
ertain that the impa
t is intolerable, orone might pla
e the guardrail somewhere in between. This un
ertaintyin pla
ing the guardrail may arise out of 
ognitive un
ertainty (thede
isionmaker simply doesn't know, what is (in)tolerable), but it alsoarises if probabilisti
 un
ertainty is 
onsidered expli
itly. If one looksfurther at the 
hain of 
ause and e�e
t in 
limate 
hange, this situation
ould also arise, if the relation between 
limate 
hange and impa
t of
limate 
hange, the CIRF, be
omes un
ertain.One solution to this 
on
eptual problem is the introdu
tion of aprobabilisti
 guardrail. Contrary to a deterministi
 guardrail, a prob-abilisti
 guardrail is not just a single impa
t level dividing tolerablefrom intolerable, but it is a tuple of impa
t level and probability limit.In this situation, the de
isionmaker does not just spe
ify IGuard, but alsoa probability guardrail PGuard, a limit to the probability of rea
hing a
ertain impa
t level. In addition, PGuard 
ould also be derived by deter-mining the di�erent IGuard, where a number of de
isionmakers wouldput the guardrail, and using this information to obtain a probabilitydistribution. This approa
h 
ould therefore also extend the single-a
torperspe
tive 
urrently employed by the TWA.These new probabilisti
 guardrails 
an now be properly expressed
on
eptually. In the 
ase of probabilisti
 un
ertainty, Eq. 10 be
omes
P (I ≤ IGuard) ∈ [0, 1] , (11)the probability of observing the guardrail is no longer either zero orone, but it is any value in between. The new probabilisti
 guardrail 
anthen be formulated as

P (I ≤ IGuard) ≥ PGuard. (12)The guardrail now 
onsists of the impa
t limit IGuard and the probabil-ity limit PGuard. Please note that the notation is somewhat arbitrary.
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16 T. Kleinen, G. Pets
hel-Held, and T. Bru
knerHere, we de
ided to determine P (I ≤ IGuard), and therefore P must belarger than PGuard, whi
h will probably be some 
omparatively largevalue, e. g. PGuard = 0.95. It 
ould also be done vi
e versa and wouldbe equally valid, as long as it is done 
onsistently.This 
on
eptual extension of the guardrail allows the 
onsiderationof probabilisti
 un
ertainty, i. e. un
ertainty that 
an be expressed as aprobability distribution, and of natural variability.3.2. Cal
ulation of emission 
orridorsThe last se
tions have shown how the deterministi
 TWA 
an be ex-tended 
on
eptually to enable the 
onsideration of probabilisti
 un-
ertainty. In the probabilisti
 TWA, the guardrail is no longer a sim-ple limit IGuard to an impa
t I, but the guardrail be
omes a 
om-bination of impa
t- and probability limit, whi
h 
an be expressed as
P (I ≤ IGuard) ≥ PGuard.Su
h modi�
ations to the 
on
eptual foundations of the approa
halso 
all for a modi�
ation of the way solution are determined. We beginthis by reviewing the deterministi
 approa
h to determining solutions.There are various possible 
on
epts for what 
an be 
onsidered solu-tions to the TWA. In the following, it is assumed that the behaviour ofthe system under 
onsideration 
an be des
ribed by the time evolutionof a ve
tor of state variables x (t) ∈ R

n. This ve
tor might, for example,
ontain global mean temperature, greenhouse gas 
on
entration, grossdomesti
 produ
t and agri
ultural yield. The time evolution of thisve
tor x (t) depends on a ve
tor u (t) ∈ R
m of 
ontrol variables. In the
limate 
hange problem that is 
onsidered here, these are the greenhousegas emissions, but in prin
iple the approa
h is of a generi
 nature, sothat any other 
ontrol variable 
ould be used as well. The evolution ofthe system 
an then be modelled as a set of di�erential equations

ẋ = f(x, t;u), (13)with a state ve
tor x ∈ R
n, a 
ontrol ve
tor u ∈ U ⊆ R

m, and aninitial state x0. The guardrails or 
onstraints 
an in the deterministi

ase usually be formulated as a ve
tor of inequalities
h (x, t;u) ≤ 0. (14)The goal of the TWA is the determination of the set of all emissionstrategies u (·) that are 
ompatible with the prede�ned 
onstraints.Mathemati
ally, this problem is equivalent to the di�erential in
lusion(Aubin and Cellina, 1984; Aubin and Frankowska, 1990)

ẋ ∈ F(x, t) with F := {f(x, t;u)|u ∈ U} (15)
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h 17under the 
ondition
h(x, t;u) ≤ 0 ∀ t ∈ [0, te] (16)subje
t to x (t = 0) = x0, F ∈ R

n × R
m.Di�erent 
on
epts exist for de�nitions of what 
an be 
onsidered asolution to Equations 15 and 16. Following Bru
kner et al. (2003), thefollowing solution 
on
epts 
an be identi�ed.A single state traje
tory x (·) starting from x0 and ful�lling simul-taneously Eq. 13 and 14 is 
alled an admissible traje
tory driven by a
orresponding admissible 
ontrol path u (·). The 
omprehensive solutionto the problem would then be provided by the bundle of all admissibletraje
tories S (x0), whi
h 
orresponds to a bundle of admissible 
ontrolpaths. This bundle of admissible 
ontrol paths is the set of all emissionredu
tion strategies sought. The a
tual determination of this bundle is
urrently not possible, however (Bru
kner et al., 2003).While the fo
us for the bundles of admissible traje
tories / 
ontrolpaths is on the di�erent traje
tories, the set of admissible points ineither state or 
ontrol spa
e 
an also be determined and is given by

Γ (x0) ≡ {(t,x (t)) | t ∈ [0, te] ,x (·) ∈ S (x0)}

⊆ [0, te] × R
n.

Γ (x0) is 
alled the funnel. It is the set of points one obtains when plot-ting all admissible traje
tories. This approa
h simpli�es the problem,sin
e it is no longer ne
essary to determine all the admissible traje
to-ries, but only the admissible states, and it is possible to determine theboundary of the funnel without knowing S (x0). It has to be stressed,though, that the funnel 
ontains less information than the bundle. Thefunnel 
ontains the admissible states, but the information how thesestates are 
onne
ted is lost.Finally, one 
an sele
t one 
omponent of either the state or the
ontrol ve
tor and proje
t the funnel onto a plane de�ned by the timeaxis and the axis of the respe
tive variable. These proje
tions are 
alledne
essary 
orridors. Unfortunately, these 
orridors do not 
ontain thefull information 
ontained in the bundles of admissible traje
tories and
ontrol paths, but they rather are ne
essary 
onditions for traje
toriesand 
ontrol paths to be admissible. This implies that every traje
toryor 
ontrol path that leaves the 
orridor violates at least one of theguardrails and is therefore not admissible, while not every traje
torylying 
ompletely within the 
orridor is ne
essarily admissible. The fa
tthat an emission path lies 
ompletely within the 
orridor does not insurethat none of the 
onstraints is violated. This has to be veri�ed on a
ase by 
ase basis. While it is possible to derive su�
ient subsets of the
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kneremission 
orridor (Kriegler and Bru
kner, 2004), these subsets are not
omplete, and it is 
urrently not possible to derive 
omplete su�
ientsubsets.Sin
e the emissions of CO2 are the most important 
ontrol variablein the 
limate 
hange problem 
onsidered here, the typi
al results ofTWA-based analyses are emission 
orridors, i. e. proje
tions of thefunnel of admissible emissions on the plane de�ned by a time and anemission axis. For the 
ase of the deterministi
 TWA an algorithm forthe approximation of emission 
orridors has been developed (Bru
kneret al., 2003). In this 
ase it is su�
ient to 
al
ulate the upper and thelower boundary of the emission 
orridor. As a further approximation,this 
an be done for a �nite number of points t ∈ {t1, t2, ..., tn} with
tn ≤ te.In this 
ase the upper (lower) boundary of the emission 
orridor 
anbe determined by su

essively maximising (minimising) the emissions
E (ti) at time ti subje
t to the dynami
al 
onstraints (Eq. 13) and theadditional 
onstraints provided by the guardrails (Eq. 14). The maximal(minimal) emissions E (ti) are then determined numeri
ally by a 
on-strained optimisation algorithm, su
h as the algorithms implemented inGAMS or MATLAB.For the 
ase of the probabilisti
 TWA, this algorithm 
an be usedas well, with minor modi�
ations. Within the framework des
ribed inEquations 13 and 14, two elements 
an be identi�ed that may be subje
tto probabilisti
 un
ertainty:1. The system of di�erential equations des
ribing the 
oupled so
io-e
onomi
-
limate system (Eq. 13) is transformed to a system ofsto
hasti
 di�erential equations

dξ = f (ξ, η, t;u) dt + g (ξ, η, t;u) dW (t) (17)with a state ve
tor ξ (t), a drift term f (·), a di�usion term g (·)and a Wiener pro
ess W (t). The terms may also 
ontain un
ertainparameters η.2. The deterministi
 
onstraints (Eq. 14) be
ome sto
hasti
 
onstraints
h (ξ, η, t;u) ≤ 0 ∀ t ∈ [0, te] . (18)In this 
ase, the traje
tories ξ (·) that solve the system of di�erentialequations (Eq. 17) and still ful�l the 
onstraints (Eq. 18), are thesolutions to the sto
hasti
 di�erential in
lusion (Aubin et al., 2000)

dξ ∈ F (ξ, dt ⊕ dW) , F ∈ R
n × R

m (19)
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 Tolerable Windows Approa
h 19with
F (ξ, dt ⊕ dW) := {f (ξ, η, t;u) dt + g (ξ, η, t;u) dW | u (t) ∈ U (x)}under the 
onstraint 
ondition

P (h (ξ, η, t;u) ≤ 0) ≥ PGuard. (20)This probabilisti
 
onstraint 
ondition limits the probability P of ob-serving the guardrail to the limiting probability guardrail PGuard.Similar to the deterministi
 
ase it will in general not be possibleto determine an exa
t solution, i. e. the bundle of 
ontrol paths, to thisproblem, but the algorithm for approximating the emission 
orridor
an be adapted to the probabilisti
 problem. As in the deterministi

ase a numeri
al implementation of the model des
ribing the evolutionof the 
oupled system is a prerequisite to the determination of emission
orridors. Depending on the nature of the problem, this may either bea deterministi
 formulation as in Eq. 13 or a sto
hasti
 implementationas in Eq. 17.For 
onsidering the probabilisti
 
onstraints, the probability P (h (ξ, η, t;u) ≤ 0)has to be determined by some method, e. g. by using Monte-Carlo te
h-niques. If one 
onsiders a probabilisti
 formulation for the dynami
alsystem, su
h as in the examples shown in Se
tion 2.4, P (h (ξ, η, t;u) ≤ 0)
an be determined by 
al
ulating the time evolution of an ensemble ofrealisations of either the 
limate sensitivity or the sto
hasti
 pro
ess ξ(or both). If, on the other hand, the guardrails in Eq. 14 be
ome prob-abilisti
, while the dynami
al system itself remains deterministi
, thenan ensemble of realisations of the pro
ess 
onsidered in the guardrail
an be used to determine P (h (ξ, η, t;u) ≤ 0).For the determination of the emission 
orridors that will be shownin Se
tion 4, both a deterministi
 and a sto
hasti
 version of the sim-ple 
limate model, as in Eq. 5-9, have been implemented. In orderto 
onsider a probability distribution for the 
limate sensitivity, thedeterministi
 version is used and an ensemble of model 
on�gurationsis generated by sampling from the probability distribution for T2xCO2
.

P (h (ξ, η, t;u) ≤ 0) 
an then be determined from the frequen
y of ex-periment out
omes. For the 
onsideration of natural variability, on theother hand, the sto
hasti
 version is used, and an ensemble of reali-sations of the sto
hasti
 pro
ess is generated. P (h (ξ, η, t;u) ≤ 0) 
anagain be determined from the frequen
y of experiment out
omes.The 
onsideration of both sour
es of un
ertainty then be
omes astraightforward task: the sto
hasti
 version of the model is used, andan ensemble of of model 
on�gurations is generated by sampling fromthe pdf for T2xCO2
. This ensemble then samples from the realisations
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knerof the sto
hasti
 pro
ess, and P (h (ξ, η, t;u) ≤ 0) is on
e again de-termined from the experiment out
omes. In this 
ase, as in all 
aseswhere multiple sour
es of un
ertainty are 
onsidered, 
are must betaken in 
hoosing an appropriate sampling strategy to insure that theun
ertainty is properly taken into a

ount.The algorithm des
ribed above has been implemented in MATLABusing the 
onstrained optimisation routine provided. As in the deter-ministi
 
ase, the emissions E (ti) are maximised (minimised) at times
ti ∈ {t1, t2, ..., tn} for the determination of the upper (lower) bound-ary of the emission 
orridor. In Se
tion 4 the probability of observinga temperature guardrail TGuard is 
onsidered as a 
limate 
onstraint,therefore P (∆T ≤ TGuard) is determined by sampling from the prob-ability distribution for 
limate sensitivity and by sampling from therealisations of the sto
hasti
 pro
ess as des
ribed above.In the 
ase of the very simple system 
onsidered here, a more el-egant solution to the determination of P (h (ξ, η, t;u) ≤ 0) 
ould befound, e. g. by employing a 
limate model expressed as a Fokker-Plan
kequation. Our aim here was to develop the 
on
eptual framework of aprobabilisti
 TWA, though, and therefore a method that 
an be appliedto a wide range of problems was used. In addition, the 
onsideration ofdi�erent realisations also allows the propagation of un
ertainty throughthe 
hain of 
ause and e�e
t in 
limate 
hange, whi
h is in most 
asesnot possible using analyti
al solutions.4. Emission 
orridors in the probabilisti
 TWAThe un
ertainties 
onsidered, un
ertainty in 
limate sensitivity andnatural variability in global mean temperature, lead to a probabilitydistribution for the warming realised under a de�ned greenhouse gasfor
ing s
enario. In this se
tion, emission 
orridors will therefore bedetermined, limiting the temperature 
hange to a temperature guardrail
TGuard that has to be observed with a probability P (∆T ≤ TGuard) ≥
PGuard larger than or equal to the probability guardrail PGuard.Following Kriegler and Bru
kner (2004), additional guardrails are setfor these 
orridors. The 
hange in emissions is parametrised as Ė = gE,and the maximal emission redu
tion is limited to 4%p.a., as large emis-sion redu
tions may be very 
ostly or even impossible to obtain. Se
ond,the rate of 
hange in emission redu
tion is limited, as a 
ertain inertiain the so
io-e
onomi
 system has to be assumed. We are assuming atransition times
ale of ttrans = 20 yrs from the initial rate of 
hangein emissions g0 to the maximal emission redu
tion gmax = −0.04. It isalso assumed that the growth rate in emissions does not rise again after

Kleinen_Pets
hel-Held_20070320a.tex; 20/03/2007; 10:34; p.20



The Probabilisti
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h 21emission redu
tions have started, for plausibility reasons. The latter two
onstraints 
an be summarised as 0 ≤ ġ ≤ −(g0 + gmax)/ttrans. Theinitial rate of 
hange in emissions g0 is determined by the optimisationalgorithm, but bounded to be between 1% p.a. and 3% p.a., the rangeof the late 20th 
entury rise in emissions.The probability guardrail 
onsidered has a large in�uen
e on theoverall size of emission 
orridors. Fig. 5, upper left, shows the 
onse-quen
es of di�ering limits to the probability of ex
eeding the temper-ature guardrail. The emission 
orridor is shown as shaded area. Pleasenote that the 
orridors shown here are additive, in the sense that thelarger 
orridors 
onsist of the total area between the upper boundaryof the 
orridor and the lower boundary of the shaded area in the plot.Here, the temperature guardrail is set to TGuard = 3K, and 
orridorsare derived for probabilities of observing the temperature guardrail of
P (∆T ≤ TGuard) ≥ PGuard = 0.97, 0.9, 0.7 and 0.5. Climate sensi-tivity is sampled the Andronova and S
hlesinger T2 distribution. Itis obvious that the emission 
orridor shrinks for higher probabilityguardrails. While a probability guardrail PGuard = 0.5 allows a max-imum in emissions of nearly 20GtC, PGuard = 0.97 allows less than
9GtC.Another important question is the in�uen
e of the probability distri-bution for 
limate sensitivity on the emission 
orridors. For guardrails
TGuard = 3K, PGuard = 0.9, this is shown in Fig. 5, upper right. In this
ase emission 
orridors were obtained for all the pdfs 
onsidered. As
ould be expe
ted after 
onsidering the pdfs shown in Fig. 1, the Forestet al. pdf from an expert prior yields the largest emission 
orridor, withmaximal emissions of about 17.5GtC allowed, while the A/S T2 andthe Forest et al. uniform pdfs yield viable emission 
orridors, with amaximum of about 12.5GtC and 9.4GtC allowed, respe
tively. Themost interesting 
ase is the A/S T3 estimate, shown as a dotted line inFig. 5. This dotted line shows the hypotheti
al upper boundary of theemission 
orridor, but sin
e the upper boundary is lo
ated below thelower boundary, the emission 
orridor is an empty set. If the A/S T3estimate had to be assumed for the probability distribution of 
limatesensitivity, it would therefore be impossible to keep 
limate 
hangebelow 3K with a high probability of not ex
eeding this value. Comparedto the other estimates, the high probability of high values for 
limatesensitivity leads to a low probability of observing the TGuard = 3Kguardrail.The main di�eren
e between the Forest et al. estimates from a uni-form and an expert prior, as shown in Fig. 1, is that the distributiongenerated from a uniform prior has a heavy tail, i. e. 
omparativelyhigh probabilities for high values of 
limate sensitivity, even though the
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Figure 5. Upper left: Emission 
orridors for temperature guardrail TGuard = 3Kand probabilities P (∆T ≤ TGuard) ≥ PGuard = 0.97, 0.9, 0.7 and 0.5. Climatesensitivity is sampled from the A/S T2 distribution. Upper right: mission 
orridorsfor TGuard = 3K, PGuard = 0.9, all probability distributions 
onsidered. Lower left:Comparison of emission 
orridors. Temperature guardrail is TGuard = 2.5K, proba-bility guardrail is PGuard = 0.7. Shown are deterministi
 
orridor with T2xCO2
= 3K,probabilisti
 
orridor with no 
onsideration of natural variability, and probabilisti

orridor with 
onsideration of natural variability and un
ertainty in T2xCO2
(A/ST2 estimate).maximum in probability density is lo
ated at the same value of T2xCO2

.The 
onsequen
e of this di�eren
e is a dramati
ally smaller emission
orridor available in the 
ase of the heavy tailed distribution.For 
omparison, Fig. 5, bottom left, shows emission 
orridors for thedeterministi
 
ase, as well as for the probabilisti
 
ase (based on theA/S T2 estimate) with and without 
onsideration of natural variabilityin. The 
orridor for the deterministi
 
ase was derived for a 
limatesensitivity T2xCO2
= 3K, and the guardrail settings were a temperatureguardrail TGuard = 2.5K with a probability guardrail PGuard = 0.7.The deterministi
 
ase yields a mu
h larger 
orridor, but the size ofthis 
orridor is very sensitive to the 
hoi
e of 
limate sensitivity. Thedi�eren
e between the probabilisti
 
orridors, on the other hand, isvery small, with the 
orridor that 
onsiders natural variability slightly
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Figure 6. Emission 
orridors for a 
limate prote
tion target TGuard = 2K for allprobability distributions 
onsidered. Probability guardrails PGuard are shown inlegend.smaller than the one that does not. Therefore the 
onsideration of theun
ertainty in 
limate sensitivity appears to be more important than the
onsideration of natural variability in this 
ase, but this is very mu
hdependent on the problem under 
onsideration. As soon as guardrailsettings other than limits to the global mean temperature 
hange are
onsidered, the natural variability may turn out to be the main fa
tor.Finally, the matter of emission 
orridors limiting temperature 
hangeto 2◦C remains an interesting question. A 
limate prote
tion target oflimiting temperature 
hange to 2◦C above the preindustrial 
limate wasproposed by the German advisory 
oun
il on 
limate 
hange in 1995(WBGU, 1995), and this target was later adopted by the EuropeanUnion. Fig. 6 shows emission 
orridors for a guardrail setting TGuard =
2K for all the probability distributions 
onsidered. For ea
h probabilitydistribution, the emission 
orridors for all probability guardrails up tothe lowest setting, where the 
orridor was an empty set, were deter-mined. The �gure therefore allows a 
omparison of the 
onsequen
esof the probability distributions for the 2◦C 
limate prote
tion target.

Kleinen_Pets
hel-Held_20070320a.tex; 20/03/2007; 10:34; p.23



24 T. Kleinen, G. Pets
hel-Held, and T. Bru
knerIf A/S T2 is the �real� probability distribution, the target 
an be metwith a probability P = 0.7, while it 
annot be met for the A/S T3 dis-tribution. Similarly, the Forest et al. distribution from a uniform prioryields just a PGuard = 0.5 
orridor, whereas the distribution from anexpert prior yields viable 
orridors up to PGuard = 0.9. Con
entratingon the A/S T2 and the Forest et al. expert distributions, it be
omesapparent that emission 
orridors that give high probabilities of stayingwithin the temperature guardrail are quite small. Therefore emissionredu
tions will have to happen soon, unless we are willing a

ept anon-negligible probability of violating the 
limate prote
tion target.On the other hand, a probability guardrail PGuard = 0.9 implies thatthere still is a probability P = 0.1 that the guardrail will be violated.Therefore even emission redu
tion strategies 
onforming to the mostambitious 
orridor determined do not insure that targets will be metwith 
ertainty. 5. Summary and 
on
lusionsIn this arti
le we have demonstrated how the �traditional� deterministi
tolerable windows approa
h 
an be extended to a probabilisti
 TWA.This extension improves the deterministi
 TWA be
ause it allows the
onsideration of probabilisti
 un
ertainty, i. e. un
ertainty that 
an beexpressed as a probability distribution or that arises through naturalvariability.This extension of the TWA involves 
hanges to the modelling frame-work and solution algorithms, but most important of all is a di�erentunderstanding of guardrails. While guardrails in the deterministi
 TWAare single values dividing tolerable impa
ts from intolerable, a proba-bilisti
 TWA for
es us to also 
onsider a probability limit. Therefore theguardrail now involves two numbers, not one: An impa
t guardrail anda probability guardrail. The impa
t guardrail is � as before � an impa
tlevel that is 
onsidered a boundary that divides tolerable impa
ts of
limate 
hange from intolerable impa
ts, but in addition we need tospe
ify a probability guardrail that spe
i�es the minimum probabilityof staying below the impa
t guardrail that the poli
ymaker is willing toa

ept.This 
on
eptual 
hange is more important than it may appear, be-
ause at the 
urrent state of 
limate 
hange s
ien
e there is very little
ertainty. Therefore it just isn't possible to ex
lude impa
ts of 
limate
hange with 
ertainty, but the maximum one 
an hope for is a 
ertainprobability for having ex
luded the impa
t of 
limate 
hange one is
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on
erned about. S
ienti�
 poli
y advi
e will therefore gain from theexpli
it 
onsideration of un
ertainty.We were able to demonstrate the probabilisti
 TWA by determiningemission 
orridors that limit the 
hange in global mean temperature to2, 2.5 and 3K, with various probabilities of observing the guardrail. Forthis the un
ertainty in 
limate sensitivity was in
luded by 
onsideringvarious estimates of probability distributions for 
limate sensitivity,and natural variability was also in
luded as an additional sour
e ofun
ertainty.In general, emission 
orridors shrink, if un
ertainty is 
onsidered andhigher probabilities of observing the guardrail are enfor
ed. The higherthe probability of observing the guardrail, the smaller the 
orridor. Thismay be obvious to the reader who has already given some thought tothis problem, but the �nding is important enough to be repeated here.While the guardrails used here may not be the most interesting �or the most relevant � ones, this arti
le serves as an illustration of the
on
eptual framework. Appli
ations of the probabilisti
 TWA to morepressing issues will surely follow, sin
e the groundwork has now beenlaid.One observation with respe
t to the emission 
orridors shown needsto be made, though. The European Union has repeatedly stated a goalof limiting global warming to 2◦C above preindustrial. Fig. 6 showsemission 
orridors for a temperature guardrail TGuard = 2K and allthe probability distributions 
onsidered. Depending on the probabilitydistribution of 
limate sensitivity, this goal 
an be met with varyingprobabilities of staying within the tolerable window, but high probabil-ities 
an only be assured if the probability distribution is one of the morebenign ones. In addition, strong e�orts to 
urb global warming have tomade soon, sin
e the emission 
orridors, the �maneuvering spa
e� ofhumanity, are 
omparatively small.Referen
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