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ed-form hydrolog-i
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tion and a downs
aling approa
h suitable for integratedassessment modeling are presented. Based on these 
omponents, the fra
tion ofworld population living in river basins a�e
ted by 
hanges in �ooding probabilityin the 
ourse of 
limate 
hange is determined. This is then used as a 
limate im-pa
t response fun
tion in order to derive emission 
orridors limiting the populationa�e
ted. This approa
h illustrates the 
onsideration of probabilisti
 impa
ts withinthe framework of the tolerable windows approa
h.Based on the 
hange in global mean temperature, as 
al
ulated by the simple 
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aling, while natural variability in these variables is
onsidered using 20th 
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2 T. Kleinen and G. Pets
hel-Held1. Introdu
tionThe integrated assessment of 
limate 
hange needs to take into a

ountboth the 
osts and the bene�ts of 
limate prote
tion measures. Whereasthe �rst mainly relates to issues of energy produ
tion, the latter isasso
iated with avoided damages from 
limate 
hange. Whereas manyintegrated assessment models 
onsider the 
osts of mean 
limate 
hange,the e�e
ts of extreme events are often negle
ted. This is despite thefa
t that there is an in
reasing trend of e
onomi
 losses due to �atmo-spheri
� natural disasters (Berz, 1999). The Mississippi �ood of 1993,for example, has 
aused e
onomi
 losses of between US$ 12 and 16 bn.(Hipple et al., 2005), whereas the losses of the 2002 summer �oodsin Europe are estimated to be about EUR 18.5 bn. in 
entral Europe(Muni
h Re, 2003). Both numbers are of the same order of magnitudeas the estimated damage 
osts in the water se
tor for both regions foran in
rease in global mean temperature of about 1-2.5◦C (Tol, 2002).This indi
ates that extreme �oods, whi
h appear in the �mid�eld� inthe statisti
s of e
onomi
 losses (Berz, 1999), should be an essential
omponent of integrated assessment.For the re
ent global warming of the 20th 
entury no general and
oherent trends 
ould be observed with regard to in
reases in annualmaximum �ows (Kundzewi
z et al., 2003). For great events, i. e. 100-year �oods, however, an in
reasing risk was dete
ted in 29 basins largerthan 20000km2 by Milly et al. (2002). In spite of major un
ertain-ties, there are some studies, in
luding Working Group II of the IPCCTAR, whi
h 
laim an in
rease of major �ooding probability for futurewarming (Kundzewi
z and S
hellnhuber, 2004; Milly et al., 2002).Other studies show similar results with a rather heterogeneous geo-graphi
al distribution of 
hanges in �ooding probabilities (Arora andBoer, 2001; Arnell, 1999a). Yet, in some highly vulnerable regions asigni�
ant in
rease of �ooding probabilities has been found under globalwarming, e. g. for Bangladesh (Mirza, 2002), 
entral Asia and easternChina (Arnell, 1999a). All of these studies are restri
ted to 
limate
hange indu
ed shifts in �ooding probabilities and do not take intoa

ount other major fa
tors relevant for 
hanges in �ooding intensitiesand frequen
ies. These fa
tors in
lude land-use 
hanges, modi�
ation ofstream�ows by various water-management s
hemes like dams or dykes,or, when it 
omes to the a
tual damages, the relo
ation of infrastru
tureor settlements. On the one hand, this makes assessments easier, but onthe other hand it might give unreliable or biased results.For a �ood 
omponent of an integrated assessment model (IAM), it isgenerally not su�
ient to model the shifts in �ooding probabilities only.In addition, one needs to map those probabilities to a
tual damages,
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Integrated assessment of 
hanges in �ooding probabilities 3where the spe
i�
 measure of damage depends on the overall frameworkof the IAM. In 
ase of a 
ost-bene�t approa
h, for example, the �oodmodel needs to give a monetary output. Within other frameworks, e. g.the tolerable windows approa
h (TWA), damages need to be 
al
ulatedin a de
ision relevant measure, whi
h doesn't need to be dire
tly relatedto monetary 
osts.Another di�
ulty in developing an integrated assessment module of�ood 
hanges is due to 
omputational requirements of those models, inparti
ular if the overall model in
ludes the de
ision making with respe
tto 
limate mitigation endogenously in the model. These 
omputational
osts ask for so-
alled redu
ed-form models, whi
h mimi
 the out
omesof more detailed models, yet are mu
h faster to 
ompute.Within the �rst part of this paper (Se
tions 2-5), we develop su
ha redu
ed-form model, based on simpli�ed des
riptions of regional pat-terns of 
limate 
hange and on a highly redu
ed s
heme for runo�
omputation. As �output� variable, the model 
omputes the numberof people a�e
ted by a pre-de�ned shift of �ooding probability, e. g. aon
e in 50 years event shifts to a on
e in 25 years event. These shifts are
omputed for large river basins with an area of more than 2.5×104 km2,and we also negle
t the �other major fa
tors� a�e
ting �ooding proba-bilities. In the �nal se
tion, we present a �rst appli
ation of the modelwithin the tolerable windows approa
h. In the TWA the integratedassessment pro
ess starts by assessing whi
h impa
ts of 
limate 
hangeare undesirable. These impa
ts are then ex
luded by setting normative
onstraints, �guardrails� in the language of the TWA. In a subsequentstep the TWA then determines sets of emission redu
tion strategies thatare 
ompatible with the prede�ned guardrails.Seen somewhat more formally, the basi
 problem in IA is a 
ontrolproblem with a basi
 di�erential equation ẋ = f (x, t;u) where the timeevolution of the 
limate state x is dependent on the state x itself, time
t and a 
ontrol strategy u. In so-
alled poli
y evaluation modeling, e. g.the IMAGE family of models (Rotmans et al., 1989; Al
amo et al.,1998), the 
ontrol strategy u is prede�ned and the 
onsequen
es of thisstrategy are evaluated exogenously, i. e. by the model user. Contraryto this, the aim in 
ost-bene�t modeling is to determine an optimalpoli
y ũ. In the TWA there are additional 
onstraints h (x, t;u) ≤ 0, the�guardrails�, and the aim is to solve the di�erential in
lusion ẋ ∈ F (x, t)with F := {f (x, t;u) | u ∈ U} under the 
ondition h (x, t;u) ≤ 0 inorder to determine the set of emission redu
tion strategies that are
ompatible with the prede�ned guardrails.Within the TWA impa
ts of 
limate 
hange 
an be represented asa Climate Impa
t Response Fun
tion (CIRF). CIRFs indi
ate the rela-tionship between 
limate 
hange and the impa
ts of 
limate 
hange.
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4 T. Kleinen and G. Pets
hel-HeldThey 
an formally be represented as I = I (C,S) with the impa
t
I, the relevant 
limati
 variables C and the signi�
ant so
io-e
onomi
variables S. In previous assessments (Füssel et al., 2003; Füssel, 2003),CIRFs were de�ned within a deterministi
 framework. The presentpaper will extend the 
on
ept of CIRFs to the probabilisti
 domain.2. Model des
ription2.1. Aims and s
opeWe are aiming to develop a redu
ed-form model that is able to in
orpo-rate the probabilities of large-s
ale �ooding in an integrated assessmentmodeling framework. We will use this model to determine CIRFs that
an be used to estimate the e�e
ts of 
limate 
hange on �ooding prob-abilities and their 
onsequen
es. While �oods may have a multitude of
auses, ranging from blo
king of river passages by i
e or debris, via land-use 
hanges and river regulation, to large pre
ipitation events, most ofthese 
auses are not dire
tly related to 
limate 
hange. Due to 
limate
hange the hydrologi
al 
hara
teristi
s of the atmosphere may 
hange.Higher temperatures 
ause an in
rease in evaporation, and the moisture
apa
ity of the atmosphere in
reases as well. This may lead to in
reasesin pre
ipitation and in parti
ular in
reases in intense pre
ipitation a
-
ording to the Clausius-Clapeyron law. As the non-
limati
 
auses for�ooding mentioned above 
an not easily be in
orporated in the modelwe are developing, our analysis will fo
us on the 
limate 
hange related
auses. In addition we have to restri
t the type of �oods we are at-tempting to model. Lo
al, sudden �oods ('�ash �oods') o

ur in small
at
hments and are mainly 
aused by lo
alized intense pre
ipitationevents. While 
hanges in the 
hara
teristi
s of these events are to beexpe
ted in a 
hanged 
limate, we regard an integrated assessment of
hanges in probability of �ash �oods as too ambitious on a global s
alefor the time being. Extensive, long-lasting �oods ('plain �oods'), onthe other hand, o

ur in larger 
at
hments (Bronstert et al., 2002).These �oods may be 
aused by extreme short-term pre
ipitation events,espe
ially in mountainous areas, but they may also be 
aused by large-s
ale rainfall lasting several days or weeks. The latter is the type of�ood we are attempting to model.The assessment we are 
ondu
ting is global in s
ope. Therefore a
ompromise has to be made with regard to the temporal and spatials
ales that 
an be resolved. While high spatial resolutions allow assess-ments on the s
ale of small river basins, or even sub-basins, they alsolead to high requirements with respe
t to 
omputing time, input data
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Integrated assessment of 
hanges in �ooding probabilities 5and validation data. Similarly, high temporal resolution 
ould allow thesimulation of �ash-�oods and similarly fast events, and might generallyimprove the �delity of model results, but again the requirements withrespe
t to data and 
omputational resour
es are very demanding.For the assessment of 
hanges in �ooding probability on the s
ale oflarge river basins, a spatial resolution of 0.5◦ seems to be a reasonable
ompromise, as well as a temporal resolution of one month. Vörösmartyet al. (2000) estimate that river basins with drainage areas ≥ 2.5 ×
104 km2 
an be modeled reasonably at a spatial resolution of 0.5◦, and
limate data are readily available at this resolution, e. g. the �CRU� databy New et al. (2000), the data byWillmott and Matsuura (2001) or databy Leemans and Cramer (1991). These data have a temporal resolutionof one month, whi
h allows the resolution of the annual 
y
le, whilefast events like �ash-�oods 
an not be investigated at this times
ale. Asgauge re
ords from a large number of stream�ow gauges with a global
overage also use the monthly time s
ale, the model uses a timestep ofone month for 
al
ulation.In addition to the 
hoi
e of resolution a few other simpli�
ations aremade. Our model will negle
t the temporal dynami
s of river routing,as this seems hardly worthwhile at a temporal resolution of one month.At this temporal s
ale water traveling at 0.5m/s moves approximately
1300 km during one timestep (Vörösmarty et al., 2000). The meantravel times therefore ex
eed one timestep for the very largest riversonly. The 
onsideration of river routing would therefore only in�uen
eresults for these river systems. In addition, river routing will not 
hangesigni�
antly due to 
limate 
hange, negle
ting possible 
hanges in thetiming of �ows. We are also negle
ting the soil storage of moisture andevaporation from water bodies. While these fa
tors may degrade modelresults, espe
ially with regard to the simulation of the annual 
y
le ofruno�, the sensitivity analysis (se
tion 4.3) suggests that the simulationof �oods would not be improved by the redu
tions in runo� implied bythese fa
tors.The aim of our model is therefore not the modeling of the dynami
alpro
esses of �ood events. We believe that these 
annot be modelled ad-equately at the spatial and temporal s
ales 
onsidered. Our assessementrather fo
uses on the potential for large s
ale �ood events. Thereforeevents of a very dynami
al nature, su
h as snowmelt �oods, �oods dueto i
e jam or �ash �oods remain outside the s
ope of our assessment.2.2. Downs
aling of 
limate 
hangeThe 
limate 
omponents of many IA models, e. g. the models DICE(Nordhaus, 1994), MERGE (Manne et al., 1995), MiniCAM (Edmonds
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6 T. Kleinen and G. Pets
hel-Heldet al., 1996) and SIAM (Hasselmann et al., 1997), are intended for theevaluation of large numbers of 
limate 
hange s
enarios. In some 
asesthey are also 
oupled to e
onomi
 models, whi
h obtain solutions byoptimizing some value-fun
tion. Therefore the 
limate models employedin su
h a framework must be run a large number of times. This limits the
omputational resour
es su
h a model may 
onsume. Therefore a typi
al
limate model for integrated assessment appli
ations only 
al
ulates the
hange in global mean temperature ∆TGM , while the spatial distribu-tion of temperature 
hange and 
hanges in other 
limati
 variables haveto be inferred from this.The impa
t of 
limate 
hange we want to assess here not only requiresa more expli
it spatial resolution, but it also needs to take into a

ount
limate variability, and not just the 
hanges in mean 
limate. We there-fore divide the modeling approa
h into a �mean� and a �variability�part.Geographi
ally expli
it 
hanges in mean 
limate 
an be 
al
ulatedby using the pattern-s
aling approa
h (Mit
hell et al., 1999; Mit
hell,2003; Füssel, 2003). In this approa
h geographi
ally expli
it patterns of
limate 
hange obtained from GCM experiments are s
aled by ∆TGM
al
ulated by the simple 
limate model in
luded in the integrated as-sessment model. Despite the apparent simpli
ity of the approa
h, resultsobtained in this way are surprisingly a

urate (Mit
hell, 2003).We are using 
limate 
hange patterns obtained by an EOF analy-sis of output from a number of GCM experiments (Füssel, 2003). Inorder to re�e
t the pertaining un
ertainty about the spatial aspe
ts of
limate 
hange, we are using patterns of temperature and pre
ipitation
hange from three di�erent GCMs, i. e. HadCM 2 (Johns et al., 1997),ECHAM 3 (Voss et al., 1998) and ECHAM 4 (Roe
kner et al., 1996).These patterns of monthly 
limate 
hange are s
aled by the 
hange inglobal mean temperature ∆TGM and applied to the 
limatology.While pattern s
aling gives the geographi
ally expli
it 
hanges inthe mean 
limate, a representation of the variability of pre
ipitationand evaporation is also ne
essary for the evaluation of 
hanges in prob-abilities of �ooding. An estimate of variability 
an be obtained in anumber of ways. Besides the vast un
ertainties to be expe
ted in ea
hmethod, most of the approa
hes, e. g. high resolution GCMs (Hen-nessy et al., 1997; Voss et al., 2002), statisti
al downs
aling (e. g.Xu, Wilby and Wigley, Wilby et al. (1999, 1997, 1998)) or sto
hasti
weather generators (e. g. Cameron et al., Hut
hinson, Wilks and Wilby(2000, 1995, 1999)) are 
omputationally expensive.Therefore we 
hose a resampling approa
h, similar to the one usedby Al
amo et al. (2001) for the GLASS model. This approa
h is basedon data of observed 
limati
 variables on a 0.5◦ grid with monthly
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Integrated assessment of 
hanges in �ooding probabilities 7resolution. Both a 
limatology and the deviations from the 
limatologyare determined from the data, and the deviations from the 
limatologyare used as �templates� of spatio-temporal variability patterns.As sour
e of 
limate data, we are using the CRU-PIK dataset byÖsterle et al. (2003) (see Se
tion 3.2). From this dataset we determinedthe monthly 
limatology for the years 1961-1990, and then determinedthe deviations from the 
limatology with T ′ (m, t) = T (m, t) − TC (m)and P ′ (m, t) = P (m, t) /PC (m) the temperature and pre
ipitationdeviation patterns for year t and month m.In more detail, the �
omplete� 
limate is 
al
ulated as follows. A
limate model is used to 
al
ulate the 
hange in global mean tempera-ture ∆TGM (t) in year t. We are 
urrently using the �ICLIPS� 
limatemodel (Pets
hel-Held et al., 1999; Kriegler and Bru
kner, 2004) forthis purpose, but in prin
iple any other 
limate model giving ∆TGM (t)
ould be used as well. ∆TGM (t) is then used to s
ale the patterns fortemperature and pre
ipitation, whi
h are applied to the 
limatologyin order to obtain the spatial distribution of the mean 
limate for
∆TGM (t). This mean 
limate is then perturbed by a randomly drawnvariability pattern in order to represent natural variability.The global temperature and pre
ipitation �elds in a parti
ular month
m within year t are thus 
omputed via

T (r,m, t) = TC (r,m) + k∆TGM (t) × TP (r,m) + T ′
(

r,m, t′
) (1)

P (r,m, t) = (PC (r,m) × (1 + k∆TGM (t) × PP (r,m))) × (2)
×P ′

(

r,m, t′
)with TC (r,m) the 
limatologi
al temperature in month m in lo
ation

r, PC (r,m) the 
limatologi
al pre
ipitation, TP (r,m) and PP (r,m)temperature and pre
ipitation 
limate 
hange patterns obtained fromGCM runs, ∆TGM (t) the 
hange in global mean temperature in year tand k the s
aling fa
tor relating the s
aling of the patterns to ∆TGM (t).
T ′ (r,m, t′) and P ′ (r,m, t′) are the deviations from the 
limatologydes
ribed above, where the time t′ refers to a year randomly drawnfrom the 20th 
entury deviations from 
limatology.Advantages of this s
heme are that spatial and temporal 
orrelationsof past variability are well represented by using this approa
h, eventhough the temporal 
orrelations are only maintained during the 
ourseof any parti
ular year and interannual 
orrelations are destroyed, whi
hmainly a�e
ts the temporal 
orrelation between De
ember and January.Sin
e we will mainly be using the 
omplete original sequen
e of devia-tion patterns, this e�e
t 
an be negle
ted in the 
urrent appli
ation.The main drawba
k is that variability is assumed to stay the samein a 
hanged 
limate � exa
tly the same for temperature due to the
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8 T. Kleinen and G. Pets
hel-Heldadditivity of the deviation pattern and somewhat in
reased in the 
aseof pre
ipitation due to the multipli
ity of the pre
ipitation deviationpatterns. While this drawba
k makes the appli
ation of the methodto a future 
hanged 
limate somewhat questionable, we are assum-ing that this approa
h 
an still give major insights into the e�e
ts ofglobal warming on �ooding probabilities. In addition, water vapor is not
onserved in the modeling approa
h, sin
e the pre
ipitation 
al
ulatedusing the pattern s
aling approa
h is not dependent on the evaporationdetermined by the model, as detailed in Se
. 2.3.2.3. Runoff 
al
ulationRuno� is 
al
ulated using the water balan
e equation as the di�eren
ebetween pre
ipitation and evaporation
R (r,m, t) = P (r,m, t) − Ea (r,m, t) − ∆S (r,m, t) , (3)with runo� R, pre
ipitation P , a
tual evaporation Ea and the 
hange insoil storage ∆S, all in lo
ation r, month m and year t. We are assuming

∆S = 0 as we are negle
ting the storage of moisture in the soil. Thisis based on the assumption that soil will be saturated during the largepre
ipitation events that lead to large-s
ale �ooding.At temperatures below 0◦C, we are assuming that pre
ipitation fallsas snow, whi
h is removed from the pre
ipitation �eld and stored untiltemperatures rise above freezing again. At temperatures above freezing,the a

umulated snow melts and is added to the pre
ipitation �eldagain.Due to data 
onstraints, the 
al
ulation of potential evaporation Ep(the evaporation that would o

ur, if enough water was available) has tobe done by a s
heme that does not depend on very detailed 
limatologi-
al data. We have therefore used the Hamon s
heme (Hamon, 1963) thatis only dependent on temperature data. In inter
omparisons of di�erentevaporation s
hemes (Federer et al., 1996; Vörösmarty et al., 1998)the Hamon s
heme was found to have 
omparatively little bias and tobe well suited to a large range of surfa
e types. On the other hand, theHamon s
heme is a purely empiri
al formulation that has been derivedfor present 
limati
 
onditions, whi
h makes it questionable whether itis still appli
able in a drasti
ally 
hanged 
limate (Vörösmarty et al.,1998). Nonetheless, we will use the Hamon s
heme for our model sin
emost other evaporation s
hemes evaluated by Federer et al. had a largerbias and requirements with regard to input data that 
an not be ful�lledby present 
limate models suitable for integrated assessment.
Kleinen_Pets
hel-Held-2006.tex; 12/06/2006; 10:22; p.8



Integrated assessment of 
hanges in �ooding probabilities 9In the Hamon s
heme, potential evaporation Ep (in mm) is 
al
ulatedas
Ep (T,Λ) =

715.5 × Λ × e (T )

T + 273.2
(4)with T the mean air temperature in ◦C, Λ the day length as fra
tionof day and e (T ) the saturated vapor pressure (in kPa) at temperature

T . As the model uses monthly timesteps and available input data havemonthly resolution, we are also 
al
ulating the monthly evaporation.This 
hoi
e of temporal resolution suits the assessment by Federer et al.(1996) that the s
heme is not very sensitive to the use of data with lowtime resolution.In prin
iple evapotranspiration 
hanges in a 
limate with elevatedlevels of CO2. However, estimates of this e�e
t vary and strongly dependon vegetation type (Lo
kwood, 1999). We therefore disregard this e�e
t.Finally, we 
al
ulate the a
tual evaporation Ea from the potentialevaporation Ep using
Ea =

{

Ep ∀ Ep ≤ P
P ∀ Ep > P.

(5)On
e again, this formulation assumes that soil and plants have nostorage 
apa
ity for moisture.The pro
edure des
ribed above gives the amount of runo� per grid
ell. Subsequently this is multiplied by grid 
ell area and summed upover all grid 
ells belonging to a river basin in order to obtain the totalmonthly runo� for ea
h river basin 
onsidered.3. Data and Methods3.1. River basin des
riptionThe evaluation of 
hanges in the probability of large-s
ale �oodingevents only makes sense on the s
ale of river basins. The river basindes
ription in our model is based on the STN-30p dataset, a dataset ofmajor river basins (Fekete et al., 1999; Vörösmarty et al., 2000). Itis derived from a GIS-based analysis of global topographi
 �elds, hasa resolution of 0.5◦, and lists the grid 
ells belonging to the drainageareas of 6152 individual river basins.As Vörösmarty et al. (2000) estimate that the a

ura
y of the datais better for river basins with drainage areas ≥ 2.5×104 km2, we ex
luderiver basins below that size from our analysis.Using a dataset of population density (CIESIN, 2000), interpolatedto the proje
ted population in 2100 using the median population pro-je
tion by IIASA (Lutz et al., 2004), we obtain the total population
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10 T. Kleinen and G. Pets
hel-Heldliving in a river basin. This guides us in the 
hoi
e of river basins forthe assessment of future 
limates: Of those river basins large enough, we
hose the river basins with the largest populations, with the ex
eptionof a few basins, like the Nile and Chang Jiang, where the assessmentwould not be meaningful due to large dams that limit the danger of�ooding. The assessment takes pla
e in 83 river basins, where about50% of world population in 2100 live. These basins are listed in theappendix.3.2. Input and validation dataAs sour
e for 
limate data, we are using a dataset by Österle et al.(2003). This dataset is derived from the CRU timeseries dataset (Newet al., 2000), a dataset of observed 
limati
 variables (pre
ipitation,daily mean temperature, diurnal temperature range, vapor pressure and
loud 
over) interpolated to a 0.5◦ grid and 
overing the time range from1901 to 1998 with monthly resolution. Österle et al. removed temporalinhomogeneities from the temperature and pre
ipitation �elds and ex-tended the dataset to 2003. Hen
eforth, this dataset will be referred toas CRU-PIK.For model validation, we make use of two datasets of stream�owgauge re
ords. The �rst dataset lists monthly dis
harge data for worldrivers ex
luding the former Soviet Union (Bodo, 2001a), based in largeparts on the UNESCO (1974) dataset. The other dataset 
ontains infor-mation on monthly dis
harge data for rivers in the former Soviet Union(Bodo, 2001b). These two datasets give us monthly dis
harge data from6883 stream�ow gauge sites. Of these gauges, 1226 had drainage areas
≥ 2.5 × 104 km2, and of those gauges, 640 had re
ords longer than 25years, with only 
omplete years 
onsidered.The 640 gauge sites are lo
ated in 148 river basins. If there is morethan one gauge site in a river basin we 
hoose the site gauging the largestdrainage area, unless there is another site with insigni�
antly smallerdrainage area, but longer re
ord length. About a third of the gauges (52)are at latitudes between 40◦N and 60◦N, all other 20◦ latitude bandsnorth of 40◦S still 
ontain between 10 and 28 gauge sites, and 26 stationsare lo
ated in the southern hemisphere. The latitudinal 
overage ofvalidation re
ords therefore appears to be adequate.3.3. Validation of annual and monthly runoffThe validation of simulated annual and monthly runo� may seem straight-forward at �rst glan
e. One would assume that it is su�
ient to takepre
ipitation and temperature measurement data, determine the model
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Integrated assessment of 
hanges in �ooding probabilities 11output for the river basin area upstream of a gauge site, and 
omparethe result with gauge re
ords.Su
h a model validation would 
ertainly be possible, if perfe
t mea-surements of stream�ow, pre
ipitation and temperature were available.If this were the 
ase, any dis
repan
ies between model output andstream�ow measurements would have to be regarded as model error.In reality, there may be quite large errors in the measured values,espe
ially in the pre
ipitation measurements (Adam and Lettenmaier,2003; Fekete and Vörösmarty, 2004). In addition, those areas wherehigher quality measurements 
an be expe
ted, are just those areaswhere it is very likely that stream�ow 
hara
teristi
s have been 
hangedby human intervention, sin
e the highest measurement quality, thelongest timeseries, and the highest density of measurement networks
an be expe
ted in the industrialized 
ountries, where extensive �uvialmanagement has taken pla
e.Fekete et al. (2002) investigated this problem in some detail. They
ompared runo� estimates from the �WBM� water balan
e model (Vörös-marty et al., 1996; Vörösmarty et al., 1998), driven by pre
ipita-tion data from the Willmott and Matsuura (2001) 
limate data set,with stream�ow measurements from sele
ted stream�ow gauging sta-tions. They report large di�eren
es between simulated and measuredstream�ow, in
luding some 
ases where measured stream�ow a
tuallyex
eeded the total measured pre
ipitation.Therefore we test the quality of our model by 
omparing its resultswith the output of other models given similar input data. For this wedetermine the bias of the mean annual stream�ow, de�ned as
bias =

S̄ − Ō

Ō
× 100%, (6)with S̄ the mean modeled annual stream�ow and Ō the 
orrespondingobserved annual stream�ow. Though this bias is negle
ting interannualvariability of stream�ows and thus is of limited use for our purposehere, it allows a far rea
hing 
omparison to other hydrologi
al models.In order to get better measures for model simulation quality, wealso determined Willmott's index of agreement (Willmott, 1982) forthe annual total runo� in the validation basins. The index of agreement

d is de�ned as
d = 1 −

[

∑N
i=1 (Si − Oi)

2

∑N
i=1

(
∣

∣Si − Ō
∣

∣ +
∣

∣Oi − Ō
∣

∣

)2

] (7)with Si the modeled value at time ti, Oi the observed value at time
ti and Ō the mean observed value. It des
ribes model quality with
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12 T. Kleinen and G. Pets
hel-Heldrespe
t to variations, with d = 0 indi
ating 
omplete disagreement,while d = 1 indi
ates 
omplete agreement. It was proposed by Willmottbe
ause the 
orrelation 
oe�
ient often used for su
h investigations isnot 
onsistently related to the quality of predi
tion (Willmott, 1982).3.4. Validation of runoff extremesThe intended purpose of our model is not the a

urate reprodu
tionof the mean stream�ows, but rather the assessment of probabilities ofmajor �ooding due to extreme pre
ipitation. Therefore model validationwill fo
us on the validation of model simulated runo� extremes, eventhough annual and monthly runo� will also be evaluated.The magnitude of the so-
alled �T -year �ood� at a site, whi
h is theamount of stream�ow that has a probability 1/T of being ex
eeded inany one year, is 
ommonly estimated by using the annual maximumseries (AMS) approa
h (Li et al., 1999). In this method, a suitableprobability distribution is �tted to the annual maxima of the timeseriesin order to estimate the return period T of 
ertain �ood levels.In prin
iple, we regard the other possible approa
h for the estimationof the magnitude of the T -year �ood, the peak over threshold (POT)approa
h (Madsen et al., 1997), as superior, but this approa
h requireswell-de�ned �ood peaks. As our model works on a monthly times
ale, itprodu
es just a single �ood-peak per year in most river basins. There-fore, the advantage of the POT approa
h, the ability to use more datathan just the single annual maximum, does not 
ome into play, and wethus make use of the AMS approa
h.A

ording to a re
ent review of probability distributions for the AMSapproa
h (Li et al., 1999), various distribution fun
tions are possible.Yet it is di�
ult to 
on
lude whi
h one is the most appropriate, asthe 
hoi
e of distribution fun
tion in mainly dependent on type of dataand other fa
tors. Of the distributions that were evaluated favorablyby Li et al., the probability distribution that gives the best �t to thestream�ow re
ords we have available is the gamma distribution.In order to obtain a measure of model performan
e, we normalizestream�ow data and model results and �t a gamma distribution tothe annual maxima of stream�ow (validation data) or runo� (modelresults). We use all available data for �tting the distribution, the time-frame 
onsidered therefore is variable for the validation data, while itis 100 years (1901-2000) for the model results.From the gamma distribution, we determine the magnitude of the50-year maximum stream�ow / runo� event. The deviation
∆50yr =

(S50yr − O50yr)

O50yr

× 100% (8)
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Integrated assessment of 
hanges in �ooding probabilities 13of the 50-year maximum event, expressed as a per
entage of O50yr,shows how well the model reprodu
es the stream�ow extremes. In thisequation S50yr is the magnitude of the model-generated 50-year maxi-mum runo� event, and O50yr is the magnitude of the 50-year maximumstream�ow event, as estimated from the gauge re
ords.As we will later be 
al
ulating the 
hange in probability of the 20th
entury 50-year maximum stream�ow event, this measure gives themost dire
t indi
ation of simulation quality for the intended purposeof the model.3.5. Sensitivity analysisMethodologi
ally, a number of 
auses of un
ertainty in model resultsbe identi�ed. These are:1. Un
ertainty in the 
limate model2. Un
ertainty in the downs
aling s
heme3. Un
ertainty in the hydrologi
al model.These 
auses of un
ertainty 
ould of 
ourse be broken down further intothe un
ertainties in these parti
ular parts of the assessment s
heme.We will be addressing the �rst two 
auses of un
ertainty by 
onsideringpatterns of 
hange in mean 
limate derived from di�erent GCMs, andwe will address the third point in this se
tion.This se
tion will therefore fo
us on un
ertainty in the hydrologi
almodel, whi
h is mainly 
ontained in the assumed runo� balan
e (Eq. 3).In order to assess the model sensitivity to the 
hosen parameteriza-tions, we perform a sensitivity analysis. Within the runo� balan
e, �veun
ertain fa
tors appear:1. Some portion of pre
ipitation may be 
onverted to runo� instantly,without being available for evaporation.2. Some portion of pre
ipitation may be stored as soil water or 
on-verted to groundwater, removing it from the water balan
e equation.3. Evaporation may be over- or underestimated by the simple param-eterization (Eq. 4) we are using.4. Pre
ipitation may be over- or underestimated in the dataset.5. The negle
t of 
hanges in soil moisture.
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14 T. Kleinen and G. Pets
hel-HeldTable I. Sensitivity experiments performed. Listed are experiment identi�er, equationmodi�ed, formula for the modi�
ation and the reason for performing the experiment.Experiment Equation Formula ReasonA Eq. 3 RA = 0.1 × P + (0.9 × P − E) dire
t 
onversion P to RB Eq. 3 PB = 0.9 × P groundwater re
hargeC Eq. 3 PC = 1.1 × P underestimation PD Eq. 4 Ep,D = 0.9 × Ep overestimation EpE Eq. 4 Ep,E = 1.1 × Ep underestimation Ep

In order to test the �rst four of these possibilities, we have performeda series of �ve sensitivity experiments by 
hanging the 
omponents ofthe runo� balan
e (Eq. 3). These experiments are listed in Table I. The�fth un
ertain fa
tor in Eq. 3 is the negle
t of 
hanges in soil moisture.While this fa
tor may have a large in�uen
e on model error, espe
iallywith respe
t to the monthly �ows, it is not possible to take this intoa

ount without introdu
ing soil dynami
s into the model. We thereforehad to negle
t this un
ertain fa
tor, but we 
an make a rough estimatein whi
h 
ases it may be important.Eq. 3 implies that ∆S may have two e�e
ts on the runo� balan
e,depending on P and Ea. If P > Ea the soil 
ould �soak up� some Pde
reasing R, whereas in times of P < Ea soil storage 
ould in
reasethe water available for evaporation, in
reasing Ea. This latter would nota�e
t runo� sin
e the water would just be evaporated away, and only theformer e�e
t 
ould a
tually a�e
t R. Sin
e this implies a redu
tion inavailable P , this e�e
t is therefore also partially 
onsidered in sensitivityexperiment B.For ea
h of the �ve sensitivity experiments, as well as the originalmodel 
on�guration, the measures bias and ∆50yr are determined andare 
ompared with ea
h other in Se
. 4.3.4. Model validation4.1. Verifi
ation of annual and monthly runoffIn order to validate the model performan
e, we determine the meanannual runo� and 
ompare it to estimates from other models of similars
ale.Models of similar s
ale are the ma
ro-s
ale hydrologi
al models WBM(Vörösmarty et al., 1996), WGHM (Döll et al., 2003), VIC (Nijssen
Kleinen_Pets
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Integrated assessment of 
hanges in �ooding probabilities 15et al., 2001; Liang et al., 1994), and Ma
ro-PDM (Arnell, 1999b; Meighet al., 1999) on the one hand. On the other hand, one 
ould also
onsider the land surfa
e model of atmospheri
 GCMs (Russell andMiller, 1990; Oki et al., 1999), and the Dynami
 General VegetationModel LPJ (Gerten et al., 2004). Unfortunately, the publi
ation ofa
tual numbers for the error in single river basins, as opposed to plotssummarizing the error, is not very 
ommon. We therefore have to re-stri
t the detailed 
omparison of model error to the numbers publishedby Russell and Miller (1990) and Nijssen et al. (2001).The simulation quality of these models varies widely, but is mu
himproved if the model parameters are tuned on a basin s
ale. For ex-ample, Döll et al. (2003) report a great in
rease in simulation qualityafter model tuning, similar to Nijssen et al. (2001). Sin
e no tuningon the river basin s
ale takes pla
e in our model, as there are no val-idation re
ords available for some important river basins, we limit the
omparison to the published errors before model tuning.The simulation quality of the ma
ro-s
ale models, where no su
htuning on a basin s
ale takes pla
e, generally is worse than desirable.Nijssen et al. (2001), for example, report biases ranging from -74.6%to 424.3%, with a median value of -18.1% for the untuned model, within
reasing simulation quality after tuning. Similarly, Russell and Miller(1990) report biases ranging from -62.98% to 1018% with a medianvalue of 33.93%.Arnell (1999b) and Meigh et al. (1999) do not publish numbers forspe
i�
 river basins, but judging from their plots, the biases range fromabout -50% to +20% for Arnell (1999b), where some tuning takes pla
efor the whole 
ontinent of Europe, and from at least -50% to more than+50% for Meigh et al. (1999), but in both 
ases the median bias seemsto be quite small.In Table II we are showing the simulation error for the annual runo�in those river basins, where either Russell and Miller (1990) or Nijssenet al. (2001) publish values for their models, and a dire
t 
omparison istherefore possible. While Nijssen et al. (2001) publish values for bias,Russell and Miller (1990) only publish values for mean annual runo�,both simulated and observed, and the bias has to be inferred from these.Overall, the bias of our model shows a similar spread of values as bothNijssen et al. and Russell and Miller, with the ex
eption of the veryextreme values our model produ
es in the Colorado and Murray basins.Taking all validation basins into a

ount, the bias for our modelranges from -68.8% to 2120.4%, with a median value of 9.5%, while theindex of agreement d ranges from 0.05 to 0.93 with a median of 0.54.In general the model overestimates runo�, 87 gauge sites (53%) showa positive bias. Of the 148 gauge re
ords, 98 show an absolute bias below
Kleinen_Pets
hel-Held-2006.tex; 12/06/2006; 10:22; p.15



16 T. Kleinen and G. Pets
hel-HeldTable II. Error in those river basins, where either Nijssen et al. orRussell and Miller publish values. Shown are ∆50yr, index of agreement
d and bias for our model, biasN for Nijssen et al. and biasR for Russelland Miller.River ∆50yr[%] d bias[%] biasN [%] biasR[%]Amazon 11.48 0.34 -30.79 -39.80 -62.98Amur 11.11 0.86 -8.33 -45.90 -2.77Chang Jiang 20.45 0.43 -32.98 -14.30 44.89Colorado n. a. 0.10 2120.39 315.00Columbia 4.00 0.65 -19.90 -74.30 20.72Danube 27.14 0.80 6.21 12.30 44.66Dvina 0.64 0.75 -4.78 31.30 10.38Fraser 25.18 0.75 -11.19 33.93Indigirka 24.00 0.39 -56.75 -54.70Indus 3.49 0.60 40.06 26.05Kolyma 1.12 0.50 -42.71 -32.00 376.06Lena 9.77 0.36 -38.66 -68.20 5.84Ma
kenzie 33.07 0.48 -20.28 -69.00 83.66Magdalena 21.58 0.57 -24.58 32.49Mekong 5.67 0.63 -12.12 -19.10 51.49Mississippi 2.58 0.65 31.95 18.00 -10.86Murray -18.05 0.08 1490.34 431.82Niger 25.19 0.12 336.75 82.81Nile 16.55 0.05 508.47 606.02Ob 18.90 0.73 7.11 46.50 30.91Olenek 20.99 0.52 -40.97 -36.70Parana 10.22 0.28 93.26 6.20Pe
hora 12.42 0.48 -29.26 16.30Senegal 34.21 0.20 144.59 424.30Shatt el Arab 4.92 0.80 3.53 71.74St. Lawren
e 27.87 0.25 47.24 3.36Volga -13.33 0.53 26.90 83.60Yana 32.08 0.42 -52.28 -74.60Yenisei 12.69 0.28 -34.19 -44.40 -10.54Yukon -5.63 0.34 -48.87 104.80 152.31Zambezi -4.74 0.16 318.49 13.45
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Integrated assessment of 
hanges in �ooding probabilities 1750% and 67 below 25%. 15 gauge re
ords have a bias above 250%. Ahistogram of the distribution of bias is shown in Fig. 2, along with theresults of the sensitivity analysis.The Colorado and Murray basins, where model bias is parti
ularlylarge, as well as the Nile and some other validation basins, are lo
ated invery dry areas, and therefore a number of pro
esses that are not 
onsid-ered in our model be
ome important. First of all there may be seepagefrom the river 
hannel, and the evaporation from open water may playa major role here as well, espe
ially if the river runs through lakes orwetlands. For the Nile, Niger, Senegal and Orange similar problems arereported by Döll et al. (2003), while Oki et al. (1999) report su
hproblems for the Colorado and Niger. In addition to these pro
esses,basins like the Colorado are heavily managed by humans, and as thesepro
esses are not in
luded in the model, they 
annot be representedadequately either. This latter fa
t may well explain the very large biasour model shows for the Colorado basin, whi
h is one of the most heavilymanaged river basins.Model simulation quality with respe
t to the annual total runo�and the annual 
y
le of runo� therefore is 
omparable to other mod-els of similar s
ope and s
ale, where no tuning on a river basin s
aletakes pla
e, and a better performan
e would be desirable. We mainlyattribute these performan
e problems to three 
auses. First of all, theHamon s
heme for the parameterization of potential evaporation (Eq. 4)basi
ally rests on the assumption of uniform soil and vegetation 
har-a
teristi
s. This leads to the potential evaporation s
heme being moresuitable to some river basins than to others. In addition, the negle
t ofsoil storage of moisture and river routing may lead to additional errors,espe
ially with regard to the timing of the annual 
y
le. Similarly, thesimple parameterization of snow and snowmelt introdu
es additionalerrors into the model results.4.2. Validation of runoff extremesAs we report in the methods se
tion (Se
tion 3.4), the return periodof extreme runo� events is 
ommonly evaluated by �tting a suitableprobability distribution to the annual maxima of runo�. In the 
ase ofthe stream�ow re
ords we have available, a gamma distribution turnsout to be most suitable. By performing a Kolmogorov-Smirnov test, wedetermine whether the gauge re
ords are 
ompatible with this hypoth-esis. At 5% signi�
an
e level, only 2 out of the 148 gauge re
ords arereje
ted. These are the Colorado and Rio Grande basins, where exten-sive human in�uen
e on stream�ow 
hara
teristi
s has to be assumed.
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18 T. Kleinen and G. Pets
hel-HeldThese stream�ow re
ords are ex
luded from the subsequent analysis,leaving us with 146 gauge re
ords for the validation of model extremes.
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Figure 1. Probability distributions for extremes at sele
ted gauge sites. Continuousline: �t to normalized gauge re
ord annual maxima, dashed line: �t to normalizedmodel annual maxima. Histograms show the measured distribution of extremes. Alsoshown: ∆50yr.As the mean �ows the model simulates are biased (Se
tion 4.1), theextremes 
an only be 
ompared after a suitable normalization of thedata. After normalizing stream�ow data and model results to a meanannual maximum stream�ow / runo� of one, the probability distribu-tions �tted to these data are in 
omparatively good agreement withanother. In order to give the reader an impression of model simula-tion quality, we show plots of the estimated probability distributionsat nine gauge sites. Fig. 1 shows the probability distributions for thesele
ted veri�
ation basins, as well as histograms of the number of an-nual maximum runo� events for the normalized event sizes as estimatedfrom stream�ow measurements. While the probability distributions aresimilar in every 
ase, some di�eren
es are apparent. In all 
ases theprobability distributions for the model generated extremes are widerthan the ones for the measured extremes. In addition, the peak of the
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Integrated assessment of 
hanges in �ooding probabilities 19probability distribution is higher in the 
ase of the measured extremes.Therefore the model overestimates the probability of events that arelarger or smaller than the mean event, while it underestimates theprobability of the mean event sizes.In order to quantify these errors, we determine the error ∆50yr (Eq. 8)in the estimated 50-year extreme stream�ow / runo� event.Table II lists these values for sele
ted river basins. The deviation ofthe 50-year extreme event ranges from an underestimation by -18.05%in the Murray to an overestimation by 34.21% in the Senegal. Taking allvalidation re
ords 
onsidered into a

ount, the deviation of the 50-yearevent between model and data is ranges from -36.11% to 47.02% witha median value of 3.53%. In 87 out of the 146 re
ords 
onsidered, the50-year event is overestimated. The absolute value of ∆50yr stays below10% in 66 (45%) of the 146 gauge re
ords, and it stays below 25% in130 
ases (89%). The error was never larger than 50%. A histogram ofthe distribution of ∆50yr is shown in Fig. 2, lower panel, along withresults from the sensitivity experiments.All in all, the agreement of the model simulated extreme events withthe extreme events estimated from stream�ow re
ords is surprisinglygood, 
onsidering the mu
h larger bias in the annual and monthly �ows.The error is below 10% in more than 45% of the gauge re
ords evaluated,and no gauge displayed an error larger than 50%.This good agreement of the probability distributions and of the 50-year max. runo� event, after an appropriate normalization, leads us tothe 
on
lusion that the 
urrent model appears to be suitable to theevaluation of future probabilities of high runo� events, as long as theinter
omparison of 
urrent and future probabilities takes pla
e withinthe model results. Even though the annual and monthly �ows the modelsimulates may be biased, the agreement of probability distributions�tted to stream�ow data and model results suggests that the probabilityof high runo� events relative to the (biased) mean �ows is estimatedmore or less 
orre
tly.4.3. Sensitivity analysisThe simple model formulation allows a thorough analysis, whi
h of thefa
tors in the runo� balan
e (Eq. 3) has the largest in�uen
e on modelperforman
e. The sensitivity experiments we undertook are listed inTable I, and the model results of the sensitivity analysis runs are sub-je
ted to the same analysis as above, namely a validation of the modelextremes and of the mean �ows.Fig. 2, upper half, shows a histogram of the bias relative to the meanstream�ows at the gauge sites for all 148 gauge re
ords 
onsidered. The
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Figure 2. Histogram of results for original model setup, as well as sensitivity exper-iments A-E, as de�ned in Table I. Upper panel: bias relative to mean stream�owfor sensitivity experiments. 148 gauge re
ords 
onsidered, but between 7 and 22(depending on experiment) not shown due to bias > 250%. Lower panel: deviation
∆50yr of model simulated 50-year extremes from gauge re
ord derived extremes,relative to gauge re
ord derived extremes, for original 
on�guration and sensitivityexperiments. 146 gauge re
ords 
onsidered. Legend also shows mean absolute ∆50yras m∆.mean absolute bias is highest (145%) in experiment A, where 10% ofpre
ipitation was instantly 
onverted to runo�, while it is lowest (80%)in experiment B, where P was redu
ed by 10% to a

ount for possiblegroundwater re
harge. Model performan
e is improved in sensitivityexperiments B and E (10% in
rease in Ep), while it is worse than theoriginal in sensitivity experiments A, C (10% in
rease in P ) and D (10%de
rease in Ep). As the model generally overestimates runo�, this wasexpe
ted. Pre
ipitation is redu
ed in B and evaporation is enhan
ed inE, whi
h in both 
ases redu
es the overestimation of R.Similarly, Fig. 2, lower half, shows a histogram of the deviations
∆50yr of model simulated 50-year extremes from gauge re
ord derived50-year extremes, relative to the gauge re
ord derived extremes, for the
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Integrated assessment of 
hanges in �ooding probabilities 21sensitivity experiments. The mean absolute ∆50yr is shown as m∆50yrin the legend. Overall, the spread of the di�erent sensitivity experi-ments is smaller for the extremes than for the means. The sensitivityexperiments B and E performed worse than the original setup, whileexperiments A, C and D performed slightly better. The lowest meanabsolute ∆50yr (11.8%) is found in experiment D, while it is largest(13.6%) in experiment B.Taking these results together, it seems re
ommendable to keep theoriginal model setup. While sensitivity experiment D has the lowestmean absolute ∆50yr, the result for the original setup is only slightlyworse than that of experiment D. When looking at the mean �ows,sensitivity experiments B and E perform best, while they perform worstwhen 
omparing the extremes. Setup C and D, on the other hand, wouldslightly improve performan
e with respe
t to the extremes, but theyinvolve an arbitrary s
aling of pre
ipitation or evaporation and wouldalso have a worsening e�e
t on the mean �ows.If the negle
t of soil storage was a major problem in the model,sensitivity experiment B should show improved results, as elaboratedin Se
. 3.5. This is the 
ase for the mean �ows, but for the extremesresults a
tually be
ome worse. The 
hoi
e of ∆S = 0 in Eq. 3 thereforeseems justi�ed.The sensitivity analysis has shown that there is no 
lear-
ut �best�model 
on�guration, and it seems best not to introdu
e arbitrary s
alingfa
tors. Hen
e we will keep the original, most simple model 
on�gura-tion in the following assessment of 
hanged 
limates.5. Changed probabilities for extreme runo� events under
limate 
hange5.1. A single s
enario experimentAs an example of the potential 
hanges in probability of extreme runo�events, we are showing a syntheti
 temperature 
hange s
enario andthe 
orresponding timeseries of annual maximum runo� in Fig. 3. Thetop panel shows the 
hange in global mean temperature, relative to thelate 20th 
entury, in the 
limate 
hange s
enario. As we are using theCRU-PIK measurement data during the 20th 
entury, 
limate 
hange isnot shown during this timeframe. During the 21st 
entury, global meantemperature rises rapidly and peaks in 2080 at a global mean tem-perature 
hange ∆T = 4K. Afterwards temperature de
reases again,but in 2200 global mean temperature is still about 2K higher thanduring the 20th 
entury. For simpli
ity, 
limate variability is assumed
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Figure 3. Consequen
es of 
limate 
hange in two river basins. Top panel: Climate
hange s
enario, 20th 
entury not shown be
ause driven by CRU-PIK data. Lowerpanels: Annual maximum runo�, model-generated, for the Mississippi (middle) andAmazon (bottom) basins. Also shown: 50-year maximum runo� event (dashed line)and 25-year max. runo� event (dash-dotted line).to be the same sequen
e of variability patterns as measured duringthe 20th 
entury. The lower panels show annual maximum runo� inthe Mississippi (middle panel) and Amazon (bottom) basins. Contraryto the runo� plots shown in Se
. 4.1, the runo� shown in these plotsis not the annual total summed up over sub-basins belonging to somestream�ow gauge, but the runo� shown is the annual maximum monthlyarea-weighted sum of all the grid 
ells belonging to a drainage basin.The runo� timeseries is therefore 
omparable to the annual maximumstream�ow timeseries given by a gauge lo
ated at the river mouth. Theplots also show the level of the 50-year maximum runo� event duringthe 20th 
entury (dashed line) and the level of the 25-year event (dash-dotted line). These were derived by �tting a gamma distribution to themodel-generated annual maxima of runo�. Climate 
hange patterns forthis plot were derived from ECHAM 3.
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Integrated assessment of 
hanges in �ooding probabilities 23It is 
learly visible in Fig. 3, that the annual maxima of runo� in theMississippi basin de
rease in magnitude. Both the 25-year and the 50-year max. runo� events during the 20th 
entury are never ex
eededduring the next 
enturies. The probability of �ooding therefore de-
reases in the Mississippi basin. In the Amazon basin, on the otherhand, the pi
ture is quite di�erent. Here, the 25-year event is ex
eeded59 times, while the 50-year event is ex
eeded 49 times during the 21stand 22nd 
enturies. If the system were in a stationary state (whi
h it
learly isn't), the 25-year event would be
ome a 3.1-year event, whilethe 50-year event would be
ome a 3.6-year event. The probability ofmajor runo� events therefore 
learly in
reases.The model allows the determination of the 
hange in �ooding prob-ability depending on the amount of global mean warming. We assessthe 
hanges in �ooding probability for 83 of the largest river basins,where 50% of the proje
ted world population in 2100 live. These basinsare listed in the appendix. In order to do this, we simulate 100 yearsof monthly runo� data for in
reased global mean temperatures, rang-ing from 0.1K to 5K in steps of 0.1K. The sampling sequen
e of thedeviation patterns was as in the 20th 
entury. As des
ribed above, we�t a gamma distribution to the timeseries of annual maximum runo�and are thus able to assess the 
hange in probability of a runo� event ofequal magnitude to what was the 50-year maximum runo� event duringthe 20th 
entury.Results of this assessment for nine large river basins are shown inFig. 4. This �gure also shows the un
ertainty that arises through thedi�eren
e in GCM proje
tions, sin
e we use 
limate 
hange patternsgenerated by three di�erent GCMs. While temperature proje
tions bythe GCMs di�er only moderately, the pre
ipitation 
hanges by thedi�erent GCMs di�er strongly. These models di�er in many details,espe
ially in their parameterizations of sub-grids
ale pro
esses whi
hleads to quite di�erent pre
ipitation proje
tions.The 
hanges in probability are quite heterogeneous. While the proba-bility P (Q50yr) of the 20th 
entury 50-year event Q50yr 
learly in
reasesin some river basins, there are other river basins where the magnitude
Q50yr of the 50-year event is never rea
hed at all. Using the patterns gen-erated by ECHAM 3, shown as dashed lines, the probability in
reasesmarkedly with rising temperatures in the Amazon, Parana, Chang Jiangand Mekong basins. Other river basins, namely the Mississippi, Amur,Ma
kenzie and Danube river basins, experien
e a marked de
rease in
P (Q50yr), while �ooding probability in the Yenisei basin �rst in
reasesand then de
reases again. The 
limate 
hange patterns produ
ed byECHAM 4, shown as dash-dotted lines, give a similar overall pi
ture,with the ex
eption of the Amur, Yenisei and Ma
kenzie basins. The
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Figure 4. Changed probabilities for the 20th 
entury 50-year maximum runo� event(P = 0.02) depending on 
hange in global mean Temperature ∆T . Determined using
limate 
hange patterns from ECHAM 3 (dashed line), ECHAM 4 (dash-dotted line)and HadCM 2 (dotted line).most interesting of these 
ases are the Yenisei and the Ma
kenzie. WhileECHAM 3 simulates an in
rease in P (Q50yr) at temperature 
hangesup to about 2K for the Yenisei basin, followed by a de
rease, ECHAM 4simulates a faster initial in
rease followed by a short de
rease, whi
his again followed by an in
rease in probability. A similar behavior isapparent in the Ma
kenzie basin. Here, both models proje
t an initialde
rease in P (Q50yr), but ECHAM 4 simulates an in
rease in proba-bility at 
limate 
hanges larger than 2.75K, while ECHAM 3 proje
tsno further 
hange in P (Q50yr). This di�eren
e is due to 
hanges inthe annual 
y
le of runo� in the ECHAM 4 model. While the patternsgenerated by ECHAM 3 proje
t that the annual maximum of runo�o

urs in May, ECHAM 4 simulates a shift of the annual maximum ofruno� to April, due to earlier snowmelt, and as evaporation is smallerin April due to both the shorter day length and lower temperatures,this generates in
reases in �ooding probability. In the Amur basin,the di�erent proje
tion by the two models is simply due to di�erent
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Integrated assessment of 
hanges in �ooding probabilities 25pre
ipitation proje
tions, with ECHAM 4 simulating in
reases, whileECHAM 3 produ
es de
reases in pre
ipitation.Looking at the 
limate 
hange generated by HadCM 2, the largestdi�eren
e to the ECHAM models o

urs in the Mississippi basin, whereHadCM 2 proje
ts an in
rease in P (Q50yr), while the ECHAM modelssimulate a de
rease. This is on
e again due to di�erent pre
ipitation pat-terns derived from the di�erent models. HadCM 2 proje
ts an in
reasein pre
ipitation, while the ECHAM models proje
t a de
rease.5.2. Climate Impa
t Response Fun
tionClimate impa
t response fun
tions (CIRF) (Füssel et al., 2003; Füssel,2003) have been developed as redu
ed form models in order to enablethe representation of the impa
ts of 
limate 
hange in integrated assess-ment models. A CIRF is a representation of the relation between 
limate
hange and CO2 
on
entration on the one hand, and the impa
t(s) of 
li-mate 
hange under 
onsideration on the other hand. While CIRFs wereembedded within a deterministi
 framework previously, the approa
hpresented here is the �rst attempt at using CIRFs in a probabilisti
setting.In order to determine a CIRF that is a suitable indi
ator for 
hangesin �ooding probability on a global s
ale, the results on the s
ale ofsingle river basins have to be aggregated to the global s
ale in someway. Aggregating these 
hanges in probability to a global level � afterall we have performed this analysis in 83 of the largest river basins � isnontrivial, as the aggregation of the 
hange in probability over all riverbasins may very well mask the severity of the problem, as de
reasingprobabilities in some river basins may mask the strong in
reases inother river basins. Therefore we determine the population a�e
ted byin
reasing probabilities of large runo� events. In order to do this, we usethe dataset of population density by CIESIN (2000), whi
h we extrapo-late to the population in 2100 by using the regionalized IIASA medianpopulation s
enario (Lutz et al., 2004), to determine the populationliving in the river basins analyzed.This measure may not quite represent the number of people thatare a
tually a�e
ted by the 
hange in �ooding probability. Not all thepeople living in a river basin will be a�e
ted by the 
hanged �ood-ing probability, but it seems safe to assume that the majority of thepopulation living in a river basin lives 
lose to the river and will there-fore be a�e
ted by the 
hange in �ooding probability. Furthermore,the overall damage by a �ood does a�e
t an entire region, e. g. bydemand for �nan
ing of the re
onstru
tion of destroyed infrastru
ture.Therefore the number of people living in a river basin is a reasonable
Kleinen_Pets
hel-Held-2006.tex; 12/06/2006; 10:22; p.25



26 T. Kleinen and G. Pets
hel-Held�rst approximation to the number of people a�e
ted by a 
hange in
P (Q50yr).Results for this analysis, derived using the 
limate 
hange patternsfrom the three GCMs, are shown in Fig. 5. Using the 
limate 
hangepatterns obtained from ECHAM 3, shown in Fig. 5, upper panel, one
an see that the population a�e
ted by a 
hange in probability of theformer 50-year event Q50yr to to a 25-year event P (Q50yr) = 1/25(marked by plus signs) rises steeply for a global warming ∆T ≥ 0.3K.The rise in fra
tion of world population a�e
ted then slows at a globalwarming ∆T = 0.5K, where about 15% of world population are a�e
ted.The fra
tion of world population a�e
ted �nally rea
hes about 31% at
∆T = 5K. The non-smooth nature of these 
urves is due to to the fa
tthat on
e a basin 
rosses the threshold, it's population is added to thetotal at on
e. The large initial in
rease in the plots for ECHAM 3 andECHAM 4, for example, is mainly due to the Ganges basin with it'sproje
ted population of 762 million in 2100 
rossing the threshold.This series of �gures also highlights the un
ertainty in these esti-mates. If one 
onsiders the fra
tion of population obtained using the
limate 
hange patterns from ECHAM 4, shown in Fig. 5, middle, theoverall shape of the 
urves is similar to the the ones obtained usingECHAM 3, while the threshold temperatures may be somewhat shifted.Using HadCM 2, shown in Fig. 5, bottom, the overall pi
ture is quitedi�erent. The fra
tions of world population a�e
ted are signi�
antlylower, and the in
reases are less steep than in the 
ases using theECHAM models. This di�eren
e between the proje
tions by the di�er-ent models is largely due to the di�erent estimates of future monsoonrainfall. While the ECHAMmodels proje
t in
reases in monsoon pre
ip-itation, HadCM 2 proje
ts a de
rease, and due to the large populationin the Ganges basin, this has a large e�e
t on the proje
ted populationa�e
ted.The dependen
e of the population a�e
ted by a 
hange in P (Q50yr)on 
limate 
hange shown in Fig. 5 
an be interpreted as a CIRF withinthis 
ontext. This model-derived fun
tion relates the fra
tion of worldpopulation a�e
ted by a 
hange in �ooding probability to the amountof 
limate 
hange 
ausing this 
hange in �ooding probability. In the�nal se
tion, this CIRF is used within the TWA to 
al
ulate emission
orridors, where the fra
tion of world population living in river basinsa�e
ted by 
hanges in �ooding probability is limited.
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Figure 5. Fra
tion of world population living in river basins a�e
ted by 
hangedprobability of 50 yr maximum runo� event P (Q50yr), dependent on 
hange in globalmean temperature ∆T . Climate 
hange patterns were taken from ECHAM 3 (upperpanel), ECHAM 4 (middle) and HadCM 2 (bottom). The legend for all plots isshown in the bottom panel.
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hel-Held6. Emission 
orridors limiting the 
hange in �oodingprobabilityIn the tolerable windows approa
h (TWA) (Pets
hel-Held et al., 1999;Toth, 2003; Bru
kner et al., 2003), the aim is to determine emission
orridors, i. e. the 
omplete set of emission redu
tion strategies that are
ompatible with prede�ned normative 
onstraints. These 
onstraintsare 
alled �guardrails� in the TWA.In order to limit the population a�e
ted by a 
hange in �oodingprobability, the relation between 
hange in �ooding probability andtemperature 
hange, developed in Se
tion 5.2, 
an be used as a CIRFwithin the framework of the TWA.In order to obtain the emission 
orridors, we are using the ICLIPS 
li-mate model �rst presented in Pets
hel-Held et al. (1999) and des
ribedfurther by Kriegler and Bru
kner (2004). The model is kept as used byKriegler and Bru
kner (2004) with the ex
eption of two 
hanges. Firstof all, the referen
e period of the 
limatology we are using is 1961-1990.Therefore, this timeframe also de�nes the initial 
onditions the modeluses to 
al
ulate future 
limate states. Se
ondly, as the model 
ontainsjust a primitive 
arbon 
y
le and no other greenhouse gases, we areusing a CO2-equivalent formulation. In this formulation, the radiativefor
ing by all for
ing agents is 
onverted to the CO2 
on
entration thatwould generate the same radiative for
ing. Climate sensitivity is set to
3K.As a guardrail, a normative 
onstraint that is not to be ex
eededby 
limate 
hange, various settings are possible. Here, we are 
on
en-trating on the 
hange in probability of the 50-year maximum runo�event P (Q50yr), as 
al
ulated by the model when for
ed with 20th
entury observed 
limate, yet other events 
an easily be used. We areusing P (Q50yr) for two reasons. First of all, we believe that it wouldbe misleading to estimate the size of events that have an even smallerprobability from a timeseries that is just 100 years long. Se
ond, theamount of runo� that is rea
hed or ex
eeded only on
e in 50 years isalready so large, that it seems plausible that this level will in many 
asesalready 
ause major damage to infrastru
ture and endanger humanlives, unless prote
tion measures are undertaken. The 50-year eventduring the 20th 
entury therefore seems to be a suitable ben
hmark to
ompare future 
limate states with. As guardrails we are using limitsto the population that live in the river basins a�e
ted by a 
hange in
P (Q50yr).Following Kriegler and Bru
kner (2004), three further 
onstraintsare imposed on the 
hange in emissions. The 
hange in emissions isparameterized as Ė = gE, and we are limiting the maximal emission
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Figure 6. Emission 
orridor limiting the 
hange in P (Q50yr). Maximal CO2 equiv-alent emissions allowable, if less than 20% of world population are to be a�e
tedby a 
hange in probability of the 50-year max. runo� event to the new probabilityshown in the legend. Based on the 
limate model ECHAM 3.redu
tion to 4%p.a., as large emission redu
tions may be very 
ostly. Inaddition, we are also limiting the rate of 
hange in emission redu
tion, asa 
ertain inertia in the so
io-e
onomi
 system has to be assumed. We areassuming a transition times
ale ttrans of ttrans = 20 yrs from the initialrate of 
hange in emissions g0 to the maximal emission redu
tion gmax =
−0.04. We are also assuming that the growth rate in emissions doesnot rise again, after emission redu
tions have started, for plausibilityreasons. The latter two 
onstraints 
an be summarized as 0 ≤ ġ ≤
−(g0 + gmax)/ttrans.The 
orridor boundaries are then 
al
ulated by performing a 
on-strained optimization, where the maximum (minimum) in emissionsallowed by the 
onstraints is determined for su

essive points in time inorder to determine the upper (lower) boundary of the emission 
orridor(Leimba
h and Bru
kner, 2001; Bru
kner et al., 2003). The initialgrowth in emissions g0 is determined by the optimization as well, but
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30 T. Kleinen and G. Pets
hel-Heldlimited to be between 1% p.a. and 3% p.a., whi
h is 
lose to the rangeof the late 20th 
entury growth in emissions.Fig. 6 shows su
h emission 
orridors. These 
orridors show the CO2-equivalent emissions that are possible, if not more than 20% of theworld population in 2100 are to be a�e
ted by a 
hange in probabilityof the 50-year max. runo� event, based on the 
limate 
hange patternsgenerated by ECHAM 3. The plot shows the emission 
orridors for a
hange of P (Q50yr) to the new probabilities shown in the legend. Thea
tual emission 
orridor is the total shaded area between the upperboundary of the respe
tive shaded area and the lower boundary of allthe shaded areas. Please note that the upper boundaries of the 30-year,shown as a dotted line with 
ir
les, and the 25-year emission 
orridors,shown as a dotted line with diamonds, are a
tually lo
ated below thelower boundary. The emission 
orridors therefore are empty sets: onlyemission redu
tion strategies that involve emission redu
tions largerthan 4% p.a. would produ
e a valid solution, and as we limit emissionredu
tions to 4% p.a. for so
io-e
onomi
 reasons, this guardrail 
annotbe observed.When interpreting these 
orridors, it is important to keep in mindthat the 
orridors derived this way are ne
essary 
orridors. This meansthat all emission strategies that lie outside the 
orridor, or leave the
orridor at some point in time, de�nitely violate the guardrail. Foremission strategies that lie 
ompletely within the 
orridor, one has to
he
k, whether they violate the guardrails or not. Espe
ially emissionstrategies that stay 
lose to the upper boundary of the emission 
orridorfor most of the time are not a

eptable. For further information on theinterpretation of emission 
orridors see Kriegler and Bru
kner (2004).Fig. 7 presents a di�erent perspe
tive to the emission 
orridors. InFig. 7, isolines are presented that mark the maximum of the emission
orridors for varying 
hanges in probability and population a�e
ted.This �gure also highlights the 
onsiderable un
ertainty that is stillinherent in this analysis, due to the di�erent 
limate 
hange patternsgenerated by the di�erent GCMs. Shown are isoline diagrams for theGCM patterns 
onsidered, with ECHAM 3 shown on the upper left,ECHAM 4 on the upper right, and HadCM 2 on the lower left. Onthe lower left-hand side of the �gures, no emission 
orridor exists that
ould limit the population a�e
ted by the 
hanged �ooding probabilityto these numbers. This is due to the fa
t that the maximum in emissionsof the allowable minimum emissions traje
tory is 9.4 GtC, due to thetransition time s
ale and the maximum emission redu
tions imposed,whi
h still implies a temperature 
hange of about 1.3◦C relative tothe 1961-1990 average global mean temperature. Emissions above amaximum of 60 GtC were not evaluated, sin
e these imply temperature
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Figure 7. Maximum CO2 equivalent emissions [GtC℄ of the emission 
orridors forthe 
limate 
hange patterns generated by all three GCMs. Shown are the maximal
CO2 equivalent emissions allowed, if the fra
tion of world population, shown on theabs
issa, a�e
ted by the 
hange in P (Q50yr) to the new probability shown on theordinate is to be limited. In the lower left hand 
orner of the three plots no viableemission 
orridors exist.

hanges larger than 5◦C � a temperature 
hange, where the simple
limate model we are using is not appli
able any more.If the ECHAM models should prove to be 
orre
t, it will be impos-sible to prevent 20% of the world population from being a�e
ted bythe 50-year maximum runo� event be
oming a 25-year event, and morethan 10% will be a�e
ted by even larger 
hanges in probability. Thisis mainly due to the large in
reases in pre
ipitation that the ECHAMmodels proje
t for the Ganges basin. If, on the other hand, HadCM 2should prove to be 
orre
t, the population a�e
ted will be less dramati
,but it will still be impossible to prevent 10% of world population frombeing a�e
ted by a 
hange of the 50-year to a 40-year event.
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hel-Held7. Dis
ussion and Con
lusionsWe have presented an approa
h to allow the representation of 
hanges inprobabilities of large-s
ale �ood events in the integrated assessment of
limate 
hange. We have developed a downs
aling s
heme that enablesus to use the 
hanges in global mean temperature 
al
ulated by inte-grated assessment 
limate models to determine the 
hanges in pre
ipi-tation and evaporation on a river basin s
ale, in
luding a representationof natural variability. These are then used to drive a hydrologi
al modelthat aggregates the 
hanges to river basin s
ale, and an assessment of
hanges in �ooding probability 
an be performed.Throughout the paper we have attempted to be very 
lear aboutun
ertainties and short
omings in our approa
h, and some need to berepeated here.First of all, the type of �ood events that 
an be 
onsidered is quiterestri
ted. Due to limited temporal and spatial resolution, events onsmall spatial or temporal s
ales 
annot be 
onsidered adequately. This,unfortunately, is the pri
e one has to pay for 
ondu
ting su
h an as-sessment on a global s
ale, whi
h is, in our opinion, a ne
essity forthe integrated assessment of 
limate 
hange. On the other hand, themodel validation shows that model performan
e is satisfa
tory for large-s
ale events, the so-
alled plain �oods, and here model performan
ea
tually improves for the assessment of extreme events, as 
omparedto the performan
e for the mean �ows. We think, therefore, that ourassessment of 
hanges in �ooding probability is meaningful.A se
ond major short
oming is the un
ertainty that 
omes from thedi�erent 
hanges in the mean 
limate that are proje
ted by di�erentGCMs. This un
ertainty has to be a

epted for the time being. We tryto in
orporate it by using 
limate 
hange patterns derived from di�erentGCMs, but the representation of this un
ertainty 
an still be improved.The third problem is the assumption that spatio-temporal variabilityof 
limate will stay the same in a 
hanged 
limate. It is likely that thiswill not be the 
ase, and there is eviden
e from the diagnosis of someGCM simulations (e. g. Kharin and Zwiers, 2000), that 
limate 
hangemay a
tually in
rease probabilities of extreme pre
ipitation events andtherefore �oods. On
e again there is s
ope for improvement of ourapproa
h, and our results may turn out to be a lower bound on the
hange in probability.The short
omings of our approa
h 
an, unfortunately, not be avoided
ompletely when dealing with this subje
t matter on a global s
ale. Onthe other hand, this is the �rst assessment of this nature on this s
alethat we are aware of, and future developments will undoubtedly allowimprovements to be made. At the same time we �rmly believe that in-
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Integrated assessment of 
hanges in �ooding probabilities 33tegrated assessment has to take into a

ount 
hanges in extreme eventsbe
ause it is through these 
hanges that many of the most widespread
onsequen
es of 
limate 
hange will be felt.The modeling results presented in the previous se
tions suggest that
hanges in the probability of large s
ale �ooding due to 
hanges in pre-
ipitation indu
ed by future 
limate 
hange might have a severe impa
ton a signi�
ant portion of the world's population. Not only does thesimulation with a single 
limate 
hange s
enario as in Se
. 5.1 suggest anin
rease in probabilities for large s
ale �oods, but even more signi�
antare the results obtained within the appli
ation of the tolerable windowsapproa
h.Within this appli
ation of the TWA, the portion of the world popu-lation experien
ing an in
reased probability of what is today a 50-yearevent has been implemented as a 
onstraint for future 
limate 
hange.Within this �rst step, a 
limate impa
t response fun
tion (CIRF) is im-plemented, whi
h is based on the hydrologi
al model presented before.This CIRF gives the proportion of world population whi
h experien
es aspe
i�ed shift in �ooding probabilities as a fun
tion of the global meantemperature. In a se
ond step, the 
orridors of admissible emissionswere 
al
ulated, whi
h 
omply with this 
onstraint and whi
h do notex
eed a redu
tion rate of more than 4% p.a. Both the 
limate impa
tresponse fun
tion and the resulting 
orridors suggest that:
− There is a signi�
ant risk that even a small in
rease in global meantemperature by less than 0.5◦C brings about a signi�
ant in
reasein �ooding probabilities whi
h 
an a�e
t up to 20% of the worldpopulation. Here, results di�er with di�erent spatial patterns of
limate 
hange obtained from three GCMs. More spe
i�
ally, therisk depends on the fate of the Indian Monsoon, as the two ECHAMGCMs both show a strengthening. Therefore, the un
ertaintiesasso
iated the future behavior of the monsoon are not only ofrelevan
e for agri
ulture, but also for �oods.
− If the 
hanges in mean 
limate proje
ted by the ECHAM modelsshould turn out to be right, there is no reasonable emission s
enarioto insure that only small proportions of the world population area�e
ted by in
reases in the probabilities of major �oods. If, forexample, we 
onsider a proportion of 20% of the world population,we have to re
kon with shifts in probabilities, where what has beena 50 yr event in the 20th 
entury be
omes at least a 25 yr eventover the next 100 years.
− The danger of su
h unavoidable 
onsequen
es of 
limate 
hangeimplies that adaptation to in
reasing �ooding probabilities are in-
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hel-Heldevitable. Given the possibility that these shifts might happen withrelatively small in
reases in global mean temperature, adaptationmeasures need to be taken soon, whi
h 
alls for an in
reasing e�ortto study and understand the pro
esses of adaptation.Despite all the un
ertainties mentioned, these 
on
lusions are quiterobust, and we 
onsider the model as good enough to 
on
lude that anin
rease in �ooding probabilities is a major reason for 
on
ern about
limate 
hange. In
reased modeling e�orts need to be undertaken to lo-
alize the 
riti
al regions for in
reased �ooding, in order to get improvedinformation for adaptation priorities.A
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Integrated assessment of 
hanges in �ooding probabilities 35AppendixA. List of river basins 
onsideredTable III. River basins 
onsidered in the assessment. Listed are river basin name, populationin 2100 in Millions, and river basin area in 105km2.Name Pop. 2100 [106℄ Area [105
km

2℄ Name Pop. 2100 [106℄ Area [105
km

2℄Ganges 762 16.33 Sao Fran
is
o 23 6.17Indus 284 11.46 Ob 22 25.77Niger 180 22.46 Chao Phraya 21 1.42Zaire 157 37.09 Galana 21 1.18Huang He 128 8.96 Elbe 20 1.49Parana 128 26.69 Brahmani 19 0.58Huai 125 2.45 Cross 19 0.52Krishna 108 2.52 Rabarmati 19 0.28Mississippi 104 32.12 Dnepr 19 5.10Godavari 100 3.12 Panu
o 18 0.92Hai Ho 93 2.46 Po 18 1.02Shatt el Arab 87 9.70 Mahi 17 0.29Zhujiang 80 4.10 Sa
ramento 17 1.93Zambezi 79 19.94 Tana (Ken) 16 0.99St. Lawren
e 71 12.70 Kizil Irmak 15 1.10Damodar 61 0.60 Penner 15 0.54Amur 61 29.11 Wisla 15 1.81Mekong 60 7.76 Seine 13 0.74Danube 54 7.90 Dongjiang 13 0.34Amazon 50 58.70 Senegal 13 8.50Balsas 48 1.23 Paraiba do Sul 13 0.63Brahmani 46 1.42 Don 12 4.24Syr-Darya 44 10.73 Menjiang 12 0.66Volta 44 3.99 Meuse 11 0.43Amu-Darya 43 6.14 Ja
ui 11 0.81Limpopo 43 4.21 Kura 11 2.20Magdalena 42 2.52 Hudson 11 0.43Rhine 41 1.66 Ru�ji 11 1.87Irrawaddy 40 4.07 Trinity 11 0.48Volga 35 14.67 Urugay 10 3.56Cauweri 35 0.79 Farah 10 3.86Liao 34 2.75 Bandama 10 1.04Jubba 34 8.18 Columbia 10 7.26Narmada 32 1.14 Cuanza 10 1.64Grande de Santiago 31 1.92 Cheli� 9 0.58Tapti 28 0.67 Sebou 9 0.39Chari 27 15.76 Motagua 9 0.27Jordan 27 2.70 Asi 9 0.28Orange 24 9.46 Comoe 9 0.83Orino
o 24 10.42 Odra 9 1.20Fu
hun Jiang 23 0.67 Sassandra 9 0.77Hong 23 1.71
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