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2 T. Kleinen and G. Petshel-Held1. IntrodutionThe integrated assessment of limate hange needs to take into aountboth the osts and the bene�ts of limate protetion measures. Whereasthe �rst mainly relates to issues of energy prodution, the latter isassoiated with avoided damages from limate hange. Whereas manyintegrated assessment models onsider the osts of mean limate hange,the e�ets of extreme events are often negleted. This is despite thefat that there is an inreasing trend of eonomi losses due to �atmo-spheri� natural disasters (Berz, 1999). The Mississippi �ood of 1993,for example, has aused eonomi losses of between US$ 12 and 16 bn.(Hipple et al., 2005), whereas the losses of the 2002 summer �oodsin Europe are estimated to be about EUR 18.5 bn. in entral Europe(Munih Re, 2003). Both numbers are of the same order of magnitudeas the estimated damage osts in the water setor for both regions foran inrease in global mean temperature of about 1-2.5◦C (Tol, 2002).This indiates that extreme �oods, whih appear in the �mid�eld� inthe statistis of eonomi losses (Berz, 1999), should be an essentialomponent of integrated assessment.For the reent global warming of the 20th entury no general andoherent trends ould be observed with regard to inreases in annualmaximum �ows (Kundzewiz et al., 2003). For great events, i. e. 100-year �oods, however, an inreasing risk was deteted in 29 basins largerthan 20000km2 by Milly et al. (2002). In spite of major unertain-ties, there are some studies, inluding Working Group II of the IPCCTAR, whih laim an inrease of major �ooding probability for futurewarming (Kundzewiz and Shellnhuber, 2004; Milly et al., 2002).Other studies show similar results with a rather heterogeneous geo-graphial distribution of hanges in �ooding probabilities (Arora andBoer, 2001; Arnell, 1999a). Yet, in some highly vulnerable regions asigni�ant inrease of �ooding probabilities has been found under globalwarming, e. g. for Bangladesh (Mirza, 2002), entral Asia and easternChina (Arnell, 1999a). All of these studies are restrited to limatehange indued shifts in �ooding probabilities and do not take intoaount other major fators relevant for hanges in �ooding intensitiesand frequenies. These fators inlude land-use hanges, modi�ation ofstream�ows by various water-management shemes like dams or dykes,or, when it omes to the atual damages, the reloation of infrastrutureor settlements. On the one hand, this makes assessments easier, but onthe other hand it might give unreliable or biased results.For a �ood omponent of an integrated assessment model (IAM), it isgenerally not su�ient to model the shifts in �ooding probabilities only.In addition, one needs to map those probabilities to atual damages,
Kleinen_Petshel-Held-2006.tex; 12/06/2006; 10:22; p.2



Integrated assessment of hanges in �ooding probabilities 3where the spei� measure of damage depends on the overall frameworkof the IAM. In ase of a ost-bene�t approah, for example, the �oodmodel needs to give a monetary output. Within other frameworks, e. g.the tolerable windows approah (TWA), damages need to be alulatedin a deision relevant measure, whih doesn't need to be diretly relatedto monetary osts.Another di�ulty in developing an integrated assessment module of�ood hanges is due to omputational requirements of those models, inpartiular if the overall model inludes the deision making with respetto limate mitigation endogenously in the model. These omputationalosts ask for so-alled redued-form models, whih mimi the outomesof more detailed models, yet are muh faster to ompute.Within the �rst part of this paper (Setions 2-5), we develop suha redued-form model, based on simpli�ed desriptions of regional pat-terns of limate hange and on a highly redued sheme for runo�omputation. As �output� variable, the model omputes the numberof people a�eted by a pre-de�ned shift of �ooding probability, e. g. aone in 50 years event shifts to a one in 25 years event. These shifts areomputed for large river basins with an area of more than 2.5×104 km2,and we also neglet the �other major fators� a�eting �ooding proba-bilities. In the �nal setion, we present a �rst appliation of the modelwithin the tolerable windows approah. In the TWA the integratedassessment proess starts by assessing whih impats of limate hangeare undesirable. These impats are then exluded by setting normativeonstraints, �guardrails� in the language of the TWA. In a subsequentstep the TWA then determines sets of emission redution strategies thatare ompatible with the prede�ned guardrails.Seen somewhat more formally, the basi problem in IA is a ontrolproblem with a basi di�erential equation ẋ = f (x, t;u) where the timeevolution of the limate state x is dependent on the state x itself, time
t and a ontrol strategy u. In so-alled poliy evaluation modeling, e. g.the IMAGE family of models (Rotmans et al., 1989; Alamo et al.,1998), the ontrol strategy u is prede�ned and the onsequenes of thisstrategy are evaluated exogenously, i. e. by the model user. Contraryto this, the aim in ost-bene�t modeling is to determine an optimalpoliy ũ. In the TWA there are additional onstraints h (x, t;u) ≤ 0, the�guardrails�, and the aim is to solve the di�erential inlusion ẋ ∈ F (x, t)with F := {f (x, t;u) | u ∈ U} under the ondition h (x, t;u) ≤ 0 inorder to determine the set of emission redution strategies that areompatible with the prede�ned guardrails.Within the TWA impats of limate hange an be represented asa Climate Impat Response Funtion (CIRF). CIRFs indiate the rela-tionship between limate hange and the impats of limate hange.
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4 T. Kleinen and G. Petshel-HeldThey an formally be represented as I = I (C,S) with the impat
I, the relevant limati variables C and the signi�ant soio-eonomivariables S. In previous assessments (Füssel et al., 2003; Füssel, 2003),CIRFs were de�ned within a deterministi framework. The presentpaper will extend the onept of CIRFs to the probabilisti domain.2. Model desription2.1. Aims and sopeWe are aiming to develop a redued-form model that is able to inorpo-rate the probabilities of large-sale �ooding in an integrated assessmentmodeling framework. We will use this model to determine CIRFs thatan be used to estimate the e�ets of limate hange on �ooding prob-abilities and their onsequenes. While �oods may have a multitude ofauses, ranging from bloking of river passages by ie or debris, via land-use hanges and river regulation, to large preipitation events, most ofthese auses are not diretly related to limate hange. Due to limatehange the hydrologial harateristis of the atmosphere may hange.Higher temperatures ause an inrease in evaporation, and the moistureapaity of the atmosphere inreases as well. This may lead to inreasesin preipitation and in partiular inreases in intense preipitation a-ording to the Clausius-Clapeyron law. As the non-limati auses for�ooding mentioned above an not easily be inorporated in the modelwe are developing, our analysis will fous on the limate hange relatedauses. In addition we have to restrit the type of �oods we are at-tempting to model. Loal, sudden �oods ('�ash �oods') our in smallathments and are mainly aused by loalized intense preipitationevents. While hanges in the harateristis of these events are to beexpeted in a hanged limate, we regard an integrated assessment ofhanges in probability of �ash �oods as too ambitious on a global salefor the time being. Extensive, long-lasting �oods ('plain �oods'), onthe other hand, our in larger athments (Bronstert et al., 2002).These �oods may be aused by extreme short-term preipitation events,espeially in mountainous areas, but they may also be aused by large-sale rainfall lasting several days or weeks. The latter is the type of�ood we are attempting to model.The assessment we are onduting is global in sope. Therefore aompromise has to be made with regard to the temporal and spatialsales that an be resolved. While high spatial resolutions allow assess-ments on the sale of small river basins, or even sub-basins, they alsolead to high requirements with respet to omputing time, input data
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Integrated assessment of hanges in �ooding probabilities 5and validation data. Similarly, high temporal resolution ould allow thesimulation of �ash-�oods and similarly fast events, and might generallyimprove the �delity of model results, but again the requirements withrespet to data and omputational resoures are very demanding.For the assessment of hanges in �ooding probability on the sale oflarge river basins, a spatial resolution of 0.5◦ seems to be a reasonableompromise, as well as a temporal resolution of one month. Vörösmartyet al. (2000) estimate that river basins with drainage areas ≥ 2.5 ×
104 km2 an be modeled reasonably at a spatial resolution of 0.5◦, andlimate data are readily available at this resolution, e. g. the �CRU� databy New et al. (2000), the data byWillmott and Matsuura (2001) or databy Leemans and Cramer (1991). These data have a temporal resolutionof one month, whih allows the resolution of the annual yle, whilefast events like �ash-�oods an not be investigated at this timesale. Asgauge reords from a large number of stream�ow gauges with a globaloverage also use the monthly time sale, the model uses a timestep ofone month for alulation.In addition to the hoie of resolution a few other simpli�ations aremade. Our model will neglet the temporal dynamis of river routing,as this seems hardly worthwhile at a temporal resolution of one month.At this temporal sale water traveling at 0.5m/s moves approximately
1300 km during one timestep (Vörösmarty et al., 2000). The meantravel times therefore exeed one timestep for the very largest riversonly. The onsideration of river routing would therefore only in�ueneresults for these river systems. In addition, river routing will not hangesigni�antly due to limate hange, negleting possible hanges in thetiming of �ows. We are also negleting the soil storage of moisture andevaporation from water bodies. While these fators may degrade modelresults, espeially with regard to the simulation of the annual yle ofruno�, the sensitivity analysis (setion 4.3) suggests that the simulationof �oods would not be improved by the redutions in runo� implied bythese fators.The aim of our model is therefore not the modeling of the dynamialproesses of �ood events. We believe that these annot be modelled ad-equately at the spatial and temporal sales onsidered. Our assessementrather fouses on the potential for large sale �ood events. Thereforeevents of a very dynamial nature, suh as snowmelt �oods, �oods dueto ie jam or �ash �oods remain outside the sope of our assessment.2.2. Downsaling of limate hangeThe limate omponents of many IA models, e. g. the models DICE(Nordhaus, 1994), MERGE (Manne et al., 1995), MiniCAM (Edmonds
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6 T. Kleinen and G. Petshel-Heldet al., 1996) and SIAM (Hasselmann et al., 1997), are intended for theevaluation of large numbers of limate hange senarios. In some asesthey are also oupled to eonomi models, whih obtain solutions byoptimizing some value-funtion. Therefore the limate models employedin suh a framework must be run a large number of times. This limits theomputational resoures suh a model may onsume. Therefore a typiallimate model for integrated assessment appliations only alulates thehange in global mean temperature ∆TGM , while the spatial distribu-tion of temperature hange and hanges in other limati variables haveto be inferred from this.The impat of limate hange we want to assess here not only requiresa more expliit spatial resolution, but it also needs to take into aountlimate variability, and not just the hanges in mean limate. We there-fore divide the modeling approah into a �mean� and a �variability�part.Geographially expliit hanges in mean limate an be alulatedby using the pattern-saling approah (Mithell et al., 1999; Mithell,2003; Füssel, 2003). In this approah geographially expliit patterns oflimate hange obtained from GCM experiments are saled by ∆TGMalulated by the simple limate model inluded in the integrated as-sessment model. Despite the apparent simpliity of the approah, resultsobtained in this way are surprisingly aurate (Mithell, 2003).We are using limate hange patterns obtained by an EOF analy-sis of output from a number of GCM experiments (Füssel, 2003). Inorder to re�et the pertaining unertainty about the spatial aspets oflimate hange, we are using patterns of temperature and preipitationhange from three di�erent GCMs, i. e. HadCM 2 (Johns et al., 1997),ECHAM 3 (Voss et al., 1998) and ECHAM 4 (Roekner et al., 1996).These patterns of monthly limate hange are saled by the hange inglobal mean temperature ∆TGM and applied to the limatology.While pattern saling gives the geographially expliit hanges inthe mean limate, a representation of the variability of preipitationand evaporation is also neessary for the evaluation of hanges in prob-abilities of �ooding. An estimate of variability an be obtained in anumber of ways. Besides the vast unertainties to be expeted in eahmethod, most of the approahes, e. g. high resolution GCMs (Hen-nessy et al., 1997; Voss et al., 2002), statistial downsaling (e. g.Xu, Wilby and Wigley, Wilby et al. (1999, 1997, 1998)) or stohastiweather generators (e. g. Cameron et al., Huthinson, Wilks and Wilby(2000, 1995, 1999)) are omputationally expensive.Therefore we hose a resampling approah, similar to the one usedby Alamo et al. (2001) for the GLASS model. This approah is basedon data of observed limati variables on a 0.5◦ grid with monthly
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Integrated assessment of hanges in �ooding probabilities 7resolution. Both a limatology and the deviations from the limatologyare determined from the data, and the deviations from the limatologyare used as �templates� of spatio-temporal variability patterns.As soure of limate data, we are using the CRU-PIK dataset byÖsterle et al. (2003) (see Setion 3.2). From this dataset we determinedthe monthly limatology for the years 1961-1990, and then determinedthe deviations from the limatology with T ′ (m, t) = T (m, t) − TC (m)and P ′ (m, t) = P (m, t) /PC (m) the temperature and preipitationdeviation patterns for year t and month m.In more detail, the �omplete� limate is alulated as follows. Alimate model is used to alulate the hange in global mean tempera-ture ∆TGM (t) in year t. We are urrently using the �ICLIPS� limatemodel (Petshel-Held et al., 1999; Kriegler and Brukner, 2004) forthis purpose, but in priniple any other limate model giving ∆TGM (t)ould be used as well. ∆TGM (t) is then used to sale the patterns fortemperature and preipitation, whih are applied to the limatologyin order to obtain the spatial distribution of the mean limate for
∆TGM (t). This mean limate is then perturbed by a randomly drawnvariability pattern in order to represent natural variability.The global temperature and preipitation �elds in a partiular month
m within year t are thus omputed via

T (r,m, t) = TC (r,m) + k∆TGM (t) × TP (r,m) + T ′
(

r,m, t′
) (1)

P (r,m, t) = (PC (r,m) × (1 + k∆TGM (t) × PP (r,m))) × (2)
×P ′

(

r,m, t′
)with TC (r,m) the limatologial temperature in month m in loation

r, PC (r,m) the limatologial preipitation, TP (r,m) and PP (r,m)temperature and preipitation limate hange patterns obtained fromGCM runs, ∆TGM (t) the hange in global mean temperature in year tand k the saling fator relating the saling of the patterns to ∆TGM (t).
T ′ (r,m, t′) and P ′ (r,m, t′) are the deviations from the limatologydesribed above, where the time t′ refers to a year randomly drawnfrom the 20th entury deviations from limatology.Advantages of this sheme are that spatial and temporal orrelationsof past variability are well represented by using this approah, eventhough the temporal orrelations are only maintained during the ourseof any partiular year and interannual orrelations are destroyed, whihmainly a�ets the temporal orrelation between Deember and January.Sine we will mainly be using the omplete original sequene of devia-tion patterns, this e�et an be negleted in the urrent appliation.The main drawbak is that variability is assumed to stay the samein a hanged limate � exatly the same for temperature due to the
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8 T. Kleinen and G. Petshel-Heldadditivity of the deviation pattern and somewhat inreased in the aseof preipitation due to the multipliity of the preipitation deviationpatterns. While this drawbak makes the appliation of the methodto a future hanged limate somewhat questionable, we are assum-ing that this approah an still give major insights into the e�ets ofglobal warming on �ooding probabilities. In addition, water vapor is notonserved in the modeling approah, sine the preipitation alulatedusing the pattern saling approah is not dependent on the evaporationdetermined by the model, as detailed in Se. 2.3.2.3. Runoff alulationRuno� is alulated using the water balane equation as the di�erenebetween preipitation and evaporation
R (r,m, t) = P (r,m, t) − Ea (r,m, t) − ∆S (r,m, t) , (3)with runo� R, preipitation P , atual evaporation Ea and the hange insoil storage ∆S, all in loation r, month m and year t. We are assuming

∆S = 0 as we are negleting the storage of moisture in the soil. Thisis based on the assumption that soil will be saturated during the largepreipitation events that lead to large-sale �ooding.At temperatures below 0◦C, we are assuming that preipitation fallsas snow, whih is removed from the preipitation �eld and stored untiltemperatures rise above freezing again. At temperatures above freezing,the aumulated snow melts and is added to the preipitation �eldagain.Due to data onstraints, the alulation of potential evaporation Ep(the evaporation that would our, if enough water was available) has tobe done by a sheme that does not depend on very detailed limatologi-al data. We have therefore used the Hamon sheme (Hamon, 1963) thatis only dependent on temperature data. In interomparisons of di�erentevaporation shemes (Federer et al., 1996; Vörösmarty et al., 1998)the Hamon sheme was found to have omparatively little bias and tobe well suited to a large range of surfae types. On the other hand, theHamon sheme is a purely empirial formulation that has been derivedfor present limati onditions, whih makes it questionable whether itis still appliable in a drastially hanged limate (Vörösmarty et al.,1998). Nonetheless, we will use the Hamon sheme for our model sinemost other evaporation shemes evaluated by Federer et al. had a largerbias and requirements with regard to input data that an not be ful�lledby present limate models suitable for integrated assessment.
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Integrated assessment of hanges in �ooding probabilities 9In the Hamon sheme, potential evaporation Ep (in mm) is alulatedas
Ep (T,Λ) =

715.5 × Λ × e (T )

T + 273.2
(4)with T the mean air temperature in ◦C, Λ the day length as frationof day and e (T ) the saturated vapor pressure (in kPa) at temperature

T . As the model uses monthly timesteps and available input data havemonthly resolution, we are also alulating the monthly evaporation.This hoie of temporal resolution suits the assessment by Federer et al.(1996) that the sheme is not very sensitive to the use of data with lowtime resolution.In priniple evapotranspiration hanges in a limate with elevatedlevels of CO2. However, estimates of this e�et vary and strongly dependon vegetation type (Lokwood, 1999). We therefore disregard this e�et.Finally, we alulate the atual evaporation Ea from the potentialevaporation Ep using
Ea =

{

Ep ∀ Ep ≤ P
P ∀ Ep > P.

(5)One again, this formulation assumes that soil and plants have nostorage apaity for moisture.The proedure desribed above gives the amount of runo� per gridell. Subsequently this is multiplied by grid ell area and summed upover all grid ells belonging to a river basin in order to obtain the totalmonthly runo� for eah river basin onsidered.3. Data and Methods3.1. River basin desriptionThe evaluation of hanges in the probability of large-sale �oodingevents only makes sense on the sale of river basins. The river basindesription in our model is based on the STN-30p dataset, a dataset ofmajor river basins (Fekete et al., 1999; Vörösmarty et al., 2000). Itis derived from a GIS-based analysis of global topographi �elds, hasa resolution of 0.5◦, and lists the grid ells belonging to the drainageareas of 6152 individual river basins.As Vörösmarty et al. (2000) estimate that the auray of the datais better for river basins with drainage areas ≥ 2.5×104 km2, we exluderiver basins below that size from our analysis.Using a dataset of population density (CIESIN, 2000), interpolatedto the projeted population in 2100 using the median population pro-jetion by IIASA (Lutz et al., 2004), we obtain the total population
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10 T. Kleinen and G. Petshel-Heldliving in a river basin. This guides us in the hoie of river basins forthe assessment of future limates: Of those river basins large enough, wehose the river basins with the largest populations, with the exeptionof a few basins, like the Nile and Chang Jiang, where the assessmentwould not be meaningful due to large dams that limit the danger of�ooding. The assessment takes plae in 83 river basins, where about50% of world population in 2100 live. These basins are listed in theappendix.3.2. Input and validation dataAs soure for limate data, we are using a dataset by Österle et al.(2003). This dataset is derived from the CRU timeseries dataset (Newet al., 2000), a dataset of observed limati variables (preipitation,daily mean temperature, diurnal temperature range, vapor pressure andloud over) interpolated to a 0.5◦ grid and overing the time range from1901 to 1998 with monthly resolution. Österle et al. removed temporalinhomogeneities from the temperature and preipitation �elds and ex-tended the dataset to 2003. Heneforth, this dataset will be referred toas CRU-PIK.For model validation, we make use of two datasets of stream�owgauge reords. The �rst dataset lists monthly disharge data for worldrivers exluding the former Soviet Union (Bodo, 2001a), based in largeparts on the UNESCO (1974) dataset. The other dataset ontains infor-mation on monthly disharge data for rivers in the former Soviet Union(Bodo, 2001b). These two datasets give us monthly disharge data from6883 stream�ow gauge sites. Of these gauges, 1226 had drainage areas
≥ 2.5 × 104 km2, and of those gauges, 640 had reords longer than 25years, with only omplete years onsidered.The 640 gauge sites are loated in 148 river basins. If there is morethan one gauge site in a river basin we hoose the site gauging the largestdrainage area, unless there is another site with insigni�antly smallerdrainage area, but longer reord length. About a third of the gauges (52)are at latitudes between 40◦N and 60◦N, all other 20◦ latitude bandsnorth of 40◦S still ontain between 10 and 28 gauge sites, and 26 stationsare loated in the southern hemisphere. The latitudinal overage ofvalidation reords therefore appears to be adequate.3.3. Validation of annual and monthly runoffThe validation of simulated annual and monthly runo� may seem straight-forward at �rst glane. One would assume that it is su�ient to takepreipitation and temperature measurement data, determine the model
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Integrated assessment of hanges in �ooding probabilities 11output for the river basin area upstream of a gauge site, and omparethe result with gauge reords.Suh a model validation would ertainly be possible, if perfet mea-surements of stream�ow, preipitation and temperature were available.If this were the ase, any disrepanies between model output andstream�ow measurements would have to be regarded as model error.In reality, there may be quite large errors in the measured values,espeially in the preipitation measurements (Adam and Lettenmaier,2003; Fekete and Vörösmarty, 2004). In addition, those areas wherehigher quality measurements an be expeted, are just those areaswhere it is very likely that stream�ow harateristis have been hangedby human intervention, sine the highest measurement quality, thelongest timeseries, and the highest density of measurement networksan be expeted in the industrialized ountries, where extensive �uvialmanagement has taken plae.Fekete et al. (2002) investigated this problem in some detail. Theyompared runo� estimates from the �WBM� water balane model (Vörös-marty et al., 1996; Vörösmarty et al., 1998), driven by preipita-tion data from the Willmott and Matsuura (2001) limate data set,with stream�ow measurements from seleted stream�ow gauging sta-tions. They report large di�erenes between simulated and measuredstream�ow, inluding some ases where measured stream�ow atuallyexeeded the total measured preipitation.Therefore we test the quality of our model by omparing its resultswith the output of other models given similar input data. For this wedetermine the bias of the mean annual stream�ow, de�ned as
bias =

S̄ − Ō

Ō
× 100%, (6)with S̄ the mean modeled annual stream�ow and Ō the orrespondingobserved annual stream�ow. Though this bias is negleting interannualvariability of stream�ows and thus is of limited use for our purposehere, it allows a far reahing omparison to other hydrologial models.In order to get better measures for model simulation quality, wealso determined Willmott's index of agreement (Willmott, 1982) forthe annual total runo� in the validation basins. The index of agreement

d is de�ned as
d = 1 −

[

∑N
i=1 (Si − Oi)

2

∑N
i=1

(
∣

∣Si − Ō
∣

∣ +
∣

∣Oi − Ō
∣

∣

)2

] (7)with Si the modeled value at time ti, Oi the observed value at time
ti and Ō the mean observed value. It desribes model quality with
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12 T. Kleinen and G. Petshel-Heldrespet to variations, with d = 0 indiating omplete disagreement,while d = 1 indiates omplete agreement. It was proposed by Willmottbeause the orrelation oe�ient often used for suh investigations isnot onsistently related to the quality of predition (Willmott, 1982).3.4. Validation of runoff extremesThe intended purpose of our model is not the aurate reprodutionof the mean stream�ows, but rather the assessment of probabilities ofmajor �ooding due to extreme preipitation. Therefore model validationwill fous on the validation of model simulated runo� extremes, eventhough annual and monthly runo� will also be evaluated.The magnitude of the so-alled �T -year �ood� at a site, whih is theamount of stream�ow that has a probability 1/T of being exeeded inany one year, is ommonly estimated by using the annual maximumseries (AMS) approah (Li et al., 1999). In this method, a suitableprobability distribution is �tted to the annual maxima of the timeseriesin order to estimate the return period T of ertain �ood levels.In priniple, we regard the other possible approah for the estimationof the magnitude of the T -year �ood, the peak over threshold (POT)approah (Madsen et al., 1997), as superior, but this approah requireswell-de�ned �ood peaks. As our model works on a monthly timesale, itprodues just a single �ood-peak per year in most river basins. There-fore, the advantage of the POT approah, the ability to use more datathan just the single annual maximum, does not ome into play, and wethus make use of the AMS approah.Aording to a reent review of probability distributions for the AMSapproah (Li et al., 1999), various distribution funtions are possible.Yet it is di�ult to onlude whih one is the most appropriate, asthe hoie of distribution funtion in mainly dependent on type of dataand other fators. Of the distributions that were evaluated favorablyby Li et al., the probability distribution that gives the best �t to thestream�ow reords we have available is the gamma distribution.In order to obtain a measure of model performane, we normalizestream�ow data and model results and �t a gamma distribution tothe annual maxima of stream�ow (validation data) or runo� (modelresults). We use all available data for �tting the distribution, the time-frame onsidered therefore is variable for the validation data, while itis 100 years (1901-2000) for the model results.From the gamma distribution, we determine the magnitude of the50-year maximum stream�ow / runo� event. The deviation
∆50yr =

(S50yr − O50yr)

O50yr

× 100% (8)
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Integrated assessment of hanges in �ooding probabilities 13of the 50-year maximum event, expressed as a perentage of O50yr,shows how well the model reprodues the stream�ow extremes. In thisequation S50yr is the magnitude of the model-generated 50-year maxi-mum runo� event, and O50yr is the magnitude of the 50-year maximumstream�ow event, as estimated from the gauge reords.As we will later be alulating the hange in probability of the 20thentury 50-year maximum stream�ow event, this measure gives themost diret indiation of simulation quality for the intended purposeof the model.3.5. Sensitivity analysisMethodologially, a number of auses of unertainty in model resultsbe identi�ed. These are:1. Unertainty in the limate model2. Unertainty in the downsaling sheme3. Unertainty in the hydrologial model.These auses of unertainty ould of ourse be broken down further intothe unertainties in these partiular parts of the assessment sheme.We will be addressing the �rst two auses of unertainty by onsideringpatterns of hange in mean limate derived from di�erent GCMs, andwe will address the third point in this setion.This setion will therefore fous on unertainty in the hydrologialmodel, whih is mainly ontained in the assumed runo� balane (Eq. 3).In order to assess the model sensitivity to the hosen parameteriza-tions, we perform a sensitivity analysis. Within the runo� balane, �veunertain fators appear:1. Some portion of preipitation may be onverted to runo� instantly,without being available for evaporation.2. Some portion of preipitation may be stored as soil water or on-verted to groundwater, removing it from the water balane equation.3. Evaporation may be over- or underestimated by the simple param-eterization (Eq. 4) we are using.4. Preipitation may be over- or underestimated in the dataset.5. The neglet of hanges in soil moisture.
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14 T. Kleinen and G. Petshel-HeldTable I. Sensitivity experiments performed. Listed are experiment identi�er, equationmodi�ed, formula for the modi�ation and the reason for performing the experiment.Experiment Equation Formula ReasonA Eq. 3 RA = 0.1 × P + (0.9 × P − E) diret onversion P to RB Eq. 3 PB = 0.9 × P groundwater rehargeC Eq. 3 PC = 1.1 × P underestimation PD Eq. 4 Ep,D = 0.9 × Ep overestimation EpE Eq. 4 Ep,E = 1.1 × Ep underestimation Ep

In order to test the �rst four of these possibilities, we have performeda series of �ve sensitivity experiments by hanging the omponents ofthe runo� balane (Eq. 3). These experiments are listed in Table I. The�fth unertain fator in Eq. 3 is the neglet of hanges in soil moisture.While this fator may have a large in�uene on model error, espeiallywith respet to the monthly �ows, it is not possible to take this intoaount without introduing soil dynamis into the model. We thereforehad to neglet this unertain fator, but we an make a rough estimatein whih ases it may be important.Eq. 3 implies that ∆S may have two e�ets on the runo� balane,depending on P and Ea. If P > Ea the soil ould �soak up� some Pdereasing R, whereas in times of P < Ea soil storage ould inreasethe water available for evaporation, inreasing Ea. This latter would nota�et runo� sine the water would just be evaporated away, and only theformer e�et ould atually a�et R. Sine this implies a redution inavailable P , this e�et is therefore also partially onsidered in sensitivityexperiment B.For eah of the �ve sensitivity experiments, as well as the originalmodel on�guration, the measures bias and ∆50yr are determined andare ompared with eah other in Se. 4.3.4. Model validation4.1. Verifiation of annual and monthly runoffIn order to validate the model performane, we determine the meanannual runo� and ompare it to estimates from other models of similarsale.Models of similar sale are the maro-sale hydrologial models WBM(Vörösmarty et al., 1996), WGHM (Döll et al., 2003), VIC (Nijssen
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Integrated assessment of hanges in �ooding probabilities 15et al., 2001; Liang et al., 1994), and Maro-PDM (Arnell, 1999b; Meighet al., 1999) on the one hand. On the other hand, one ould alsoonsider the land surfae model of atmospheri GCMs (Russell andMiller, 1990; Oki et al., 1999), and the Dynami General VegetationModel LPJ (Gerten et al., 2004). Unfortunately, the publiation ofatual numbers for the error in single river basins, as opposed to plotssummarizing the error, is not very ommon. We therefore have to re-strit the detailed omparison of model error to the numbers publishedby Russell and Miller (1990) and Nijssen et al. (2001).The simulation quality of these models varies widely, but is muhimproved if the model parameters are tuned on a basin sale. For ex-ample, Döll et al. (2003) report a great inrease in simulation qualityafter model tuning, similar to Nijssen et al. (2001). Sine no tuningon the river basin sale takes plae in our model, as there are no val-idation reords available for some important river basins, we limit theomparison to the published errors before model tuning.The simulation quality of the maro-sale models, where no suhtuning on a basin sale takes plae, generally is worse than desirable.Nijssen et al. (2001), for example, report biases ranging from -74.6%to 424.3%, with a median value of -18.1% for the untuned model, withinreasing simulation quality after tuning. Similarly, Russell and Miller(1990) report biases ranging from -62.98% to 1018% with a medianvalue of 33.93%.Arnell (1999b) and Meigh et al. (1999) do not publish numbers forspei� river basins, but judging from their plots, the biases range fromabout -50% to +20% for Arnell (1999b), where some tuning takes plaefor the whole ontinent of Europe, and from at least -50% to more than+50% for Meigh et al. (1999), but in both ases the median bias seemsto be quite small.In Table II we are showing the simulation error for the annual runo�in those river basins, where either Russell and Miller (1990) or Nijssenet al. (2001) publish values for their models, and a diret omparison istherefore possible. While Nijssen et al. (2001) publish values for bias,Russell and Miller (1990) only publish values for mean annual runo�,both simulated and observed, and the bias has to be inferred from these.Overall, the bias of our model shows a similar spread of values as bothNijssen et al. and Russell and Miller, with the exeption of the veryextreme values our model produes in the Colorado and Murray basins.Taking all validation basins into aount, the bias for our modelranges from -68.8% to 2120.4%, with a median value of 9.5%, while theindex of agreement d ranges from 0.05 to 0.93 with a median of 0.54.In general the model overestimates runo�, 87 gauge sites (53%) showa positive bias. Of the 148 gauge reords, 98 show an absolute bias below
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16 T. Kleinen and G. Petshel-HeldTable II. Error in those river basins, where either Nijssen et al. orRussell and Miller publish values. Shown are ∆50yr, index of agreement
d and bias for our model, biasN for Nijssen et al. and biasR for Russelland Miller.River ∆50yr[%] d bias[%] biasN [%] biasR[%]Amazon 11.48 0.34 -30.79 -39.80 -62.98Amur 11.11 0.86 -8.33 -45.90 -2.77Chang Jiang 20.45 0.43 -32.98 -14.30 44.89Colorado n. a. 0.10 2120.39 315.00Columbia 4.00 0.65 -19.90 -74.30 20.72Danube 27.14 0.80 6.21 12.30 44.66Dvina 0.64 0.75 -4.78 31.30 10.38Fraser 25.18 0.75 -11.19 33.93Indigirka 24.00 0.39 -56.75 -54.70Indus 3.49 0.60 40.06 26.05Kolyma 1.12 0.50 -42.71 -32.00 376.06Lena 9.77 0.36 -38.66 -68.20 5.84Makenzie 33.07 0.48 -20.28 -69.00 83.66Magdalena 21.58 0.57 -24.58 32.49Mekong 5.67 0.63 -12.12 -19.10 51.49Mississippi 2.58 0.65 31.95 18.00 -10.86Murray -18.05 0.08 1490.34 431.82Niger 25.19 0.12 336.75 82.81Nile 16.55 0.05 508.47 606.02Ob 18.90 0.73 7.11 46.50 30.91Olenek 20.99 0.52 -40.97 -36.70Parana 10.22 0.28 93.26 6.20Pehora 12.42 0.48 -29.26 16.30Senegal 34.21 0.20 144.59 424.30Shatt el Arab 4.92 0.80 3.53 71.74St. Lawrene 27.87 0.25 47.24 3.36Volga -13.33 0.53 26.90 83.60Yana 32.08 0.42 -52.28 -74.60Yenisei 12.69 0.28 -34.19 -44.40 -10.54Yukon -5.63 0.34 -48.87 104.80 152.31Zambezi -4.74 0.16 318.49 13.45
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Integrated assessment of hanges in �ooding probabilities 1750% and 67 below 25%. 15 gauge reords have a bias above 250%. Ahistogram of the distribution of bias is shown in Fig. 2, along with theresults of the sensitivity analysis.The Colorado and Murray basins, where model bias is partiularlylarge, as well as the Nile and some other validation basins, are loated invery dry areas, and therefore a number of proesses that are not onsid-ered in our model beome important. First of all there may be seepagefrom the river hannel, and the evaporation from open water may playa major role here as well, espeially if the river runs through lakes orwetlands. For the Nile, Niger, Senegal and Orange similar problems arereported by Döll et al. (2003), while Oki et al. (1999) report suhproblems for the Colorado and Niger. In addition to these proesses,basins like the Colorado are heavily managed by humans, and as theseproesses are not inluded in the model, they annot be representedadequately either. This latter fat may well explain the very large biasour model shows for the Colorado basin, whih is one of the most heavilymanaged river basins.Model simulation quality with respet to the annual total runo�and the annual yle of runo� therefore is omparable to other mod-els of similar sope and sale, where no tuning on a river basin saletakes plae, and a better performane would be desirable. We mainlyattribute these performane problems to three auses. First of all, theHamon sheme for the parameterization of potential evaporation (Eq. 4)basially rests on the assumption of uniform soil and vegetation har-ateristis. This leads to the potential evaporation sheme being moresuitable to some river basins than to others. In addition, the neglet ofsoil storage of moisture and river routing may lead to additional errors,espeially with regard to the timing of the annual yle. Similarly, thesimple parameterization of snow and snowmelt introdues additionalerrors into the model results.4.2. Validation of runoff extremesAs we report in the methods setion (Setion 3.4), the return periodof extreme runo� events is ommonly evaluated by �tting a suitableprobability distribution to the annual maxima of runo�. In the ase ofthe stream�ow reords we have available, a gamma distribution turnsout to be most suitable. By performing a Kolmogorov-Smirnov test, wedetermine whether the gauge reords are ompatible with this hypoth-esis. At 5% signi�ane level, only 2 out of the 148 gauge reords arerejeted. These are the Colorado and Rio Grande basins, where exten-sive human in�uene on stream�ow harateristis has to be assumed.
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18 T. Kleinen and G. Petshel-HeldThese stream�ow reords are exluded from the subsequent analysis,leaving us with 146 gauge reords for the validation of model extremes.
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Figure 1. Probability distributions for extremes at seleted gauge sites. Continuousline: �t to normalized gauge reord annual maxima, dashed line: �t to normalizedmodel annual maxima. Histograms show the measured distribution of extremes. Alsoshown: ∆50yr.As the mean �ows the model simulates are biased (Setion 4.1), theextremes an only be ompared after a suitable normalization of thedata. After normalizing stream�ow data and model results to a meanannual maximum stream�ow / runo� of one, the probability distribu-tions �tted to these data are in omparatively good agreement withanother. In order to give the reader an impression of model simula-tion quality, we show plots of the estimated probability distributionsat nine gauge sites. Fig. 1 shows the probability distributions for theseleted veri�ation basins, as well as histograms of the number of an-nual maximum runo� events for the normalized event sizes as estimatedfrom stream�ow measurements. While the probability distributions aresimilar in every ase, some di�erenes are apparent. In all ases theprobability distributions for the model generated extremes are widerthan the ones for the measured extremes. In addition, the peak of the
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Integrated assessment of hanges in �ooding probabilities 19probability distribution is higher in the ase of the measured extremes.Therefore the model overestimates the probability of events that arelarger or smaller than the mean event, while it underestimates theprobability of the mean event sizes.In order to quantify these errors, we determine the error ∆50yr (Eq. 8)in the estimated 50-year extreme stream�ow / runo� event.Table II lists these values for seleted river basins. The deviation ofthe 50-year extreme event ranges from an underestimation by -18.05%in the Murray to an overestimation by 34.21% in the Senegal. Taking allvalidation reords onsidered into aount, the deviation of the 50-yearevent between model and data is ranges from -36.11% to 47.02% witha median value of 3.53%. In 87 out of the 146 reords onsidered, the50-year event is overestimated. The absolute value of ∆50yr stays below10% in 66 (45%) of the 146 gauge reords, and it stays below 25% in130 ases (89%). The error was never larger than 50%. A histogram ofthe distribution of ∆50yr is shown in Fig. 2, lower panel, along withresults from the sensitivity experiments.All in all, the agreement of the model simulated extreme events withthe extreme events estimated from stream�ow reords is surprisinglygood, onsidering the muh larger bias in the annual and monthly �ows.The error is below 10% in more than 45% of the gauge reords evaluated,and no gauge displayed an error larger than 50%.This good agreement of the probability distributions and of the 50-year max. runo� event, after an appropriate normalization, leads us tothe onlusion that the urrent model appears to be suitable to theevaluation of future probabilities of high runo� events, as long as theinteromparison of urrent and future probabilities takes plae withinthe model results. Even though the annual and monthly �ows the modelsimulates may be biased, the agreement of probability distributions�tted to stream�ow data and model results suggests that the probabilityof high runo� events relative to the (biased) mean �ows is estimatedmore or less orretly.4.3. Sensitivity analysisThe simple model formulation allows a thorough analysis, whih of thefators in the runo� balane (Eq. 3) has the largest in�uene on modelperformane. The sensitivity experiments we undertook are listed inTable I, and the model results of the sensitivity analysis runs are sub-jeted to the same analysis as above, namely a validation of the modelextremes and of the mean �ows.Fig. 2, upper half, shows a histogram of the bias relative to the meanstream�ows at the gauge sites for all 148 gauge reords onsidered. The
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20 T. Kleinen and G. Petshel-Held
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Figure 2. Histogram of results for original model setup, as well as sensitivity exper-iments A-E, as de�ned in Table I. Upper panel: bias relative to mean stream�owfor sensitivity experiments. 148 gauge reords onsidered, but between 7 and 22(depending on experiment) not shown due to bias > 250%. Lower panel: deviation
∆50yr of model simulated 50-year extremes from gauge reord derived extremes,relative to gauge reord derived extremes, for original on�guration and sensitivityexperiments. 146 gauge reords onsidered. Legend also shows mean absolute ∆50yras m∆.mean absolute bias is highest (145%) in experiment A, where 10% ofpreipitation was instantly onverted to runo�, while it is lowest (80%)in experiment B, where P was redued by 10% to aount for possiblegroundwater reharge. Model performane is improved in sensitivityexperiments B and E (10% inrease in Ep), while it is worse than theoriginal in sensitivity experiments A, C (10% inrease in P ) and D (10%derease in Ep). As the model generally overestimates runo�, this wasexpeted. Preipitation is redued in B and evaporation is enhaned inE, whih in both ases redues the overestimation of R.Similarly, Fig. 2, lower half, shows a histogram of the deviations
∆50yr of model simulated 50-year extremes from gauge reord derived50-year extremes, relative to the gauge reord derived extremes, for the
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Integrated assessment of hanges in �ooding probabilities 21sensitivity experiments. The mean absolute ∆50yr is shown as m∆50yrin the legend. Overall, the spread of the di�erent sensitivity experi-ments is smaller for the extremes than for the means. The sensitivityexperiments B and E performed worse than the original setup, whileexperiments A, C and D performed slightly better. The lowest meanabsolute ∆50yr (11.8%) is found in experiment D, while it is largest(13.6%) in experiment B.Taking these results together, it seems reommendable to keep theoriginal model setup. While sensitivity experiment D has the lowestmean absolute ∆50yr, the result for the original setup is only slightlyworse than that of experiment D. When looking at the mean �ows,sensitivity experiments B and E perform best, while they perform worstwhen omparing the extremes. Setup C and D, on the other hand, wouldslightly improve performane with respet to the extremes, but theyinvolve an arbitrary saling of preipitation or evaporation and wouldalso have a worsening e�et on the mean �ows.If the neglet of soil storage was a major problem in the model,sensitivity experiment B should show improved results, as elaboratedin Se. 3.5. This is the ase for the mean �ows, but for the extremesresults atually beome worse. The hoie of ∆S = 0 in Eq. 3 thereforeseems justi�ed.The sensitivity analysis has shown that there is no lear-ut �best�model on�guration, and it seems best not to introdue arbitrary salingfators. Hene we will keep the original, most simple model on�gura-tion in the following assessment of hanged limates.5. Changed probabilities for extreme runo� events underlimate hange5.1. A single senario experimentAs an example of the potential hanges in probability of extreme runo�events, we are showing a syntheti temperature hange senario andthe orresponding timeseries of annual maximum runo� in Fig. 3. Thetop panel shows the hange in global mean temperature, relative to thelate 20th entury, in the limate hange senario. As we are using theCRU-PIK measurement data during the 20th entury, limate hange isnot shown during this timeframe. During the 21st entury, global meantemperature rises rapidly and peaks in 2080 at a global mean tem-perature hange ∆T = 4K. Afterwards temperature dereases again,but in 2200 global mean temperature is still about 2K higher thanduring the 20th entury. For simpliity, limate variability is assumed
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Figure 3. Consequenes of limate hange in two river basins. Top panel: Climatehange senario, 20th entury not shown beause driven by CRU-PIK data. Lowerpanels: Annual maximum runo�, model-generated, for the Mississippi (middle) andAmazon (bottom) basins. Also shown: 50-year maximum runo� event (dashed line)and 25-year max. runo� event (dash-dotted line).to be the same sequene of variability patterns as measured duringthe 20th entury. The lower panels show annual maximum runo� inthe Mississippi (middle panel) and Amazon (bottom) basins. Contraryto the runo� plots shown in Se. 4.1, the runo� shown in these plotsis not the annual total summed up over sub-basins belonging to somestream�ow gauge, but the runo� shown is the annual maximum monthlyarea-weighted sum of all the grid ells belonging to a drainage basin.The runo� timeseries is therefore omparable to the annual maximumstream�ow timeseries given by a gauge loated at the river mouth. Theplots also show the level of the 50-year maximum runo� event duringthe 20th entury (dashed line) and the level of the 25-year event (dash-dotted line). These were derived by �tting a gamma distribution to themodel-generated annual maxima of runo�. Climate hange patterns forthis plot were derived from ECHAM 3.
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Integrated assessment of hanges in �ooding probabilities 23It is learly visible in Fig. 3, that the annual maxima of runo� in theMississippi basin derease in magnitude. Both the 25-year and the 50-year max. runo� events during the 20th entury are never exeededduring the next enturies. The probability of �ooding therefore de-reases in the Mississippi basin. In the Amazon basin, on the otherhand, the piture is quite di�erent. Here, the 25-year event is exeeded59 times, while the 50-year event is exeeded 49 times during the 21stand 22nd enturies. If the system were in a stationary state (whih itlearly isn't), the 25-year event would beome a 3.1-year event, whilethe 50-year event would beome a 3.6-year event. The probability ofmajor runo� events therefore learly inreases.The model allows the determination of the hange in �ooding prob-ability depending on the amount of global mean warming. We assessthe hanges in �ooding probability for 83 of the largest river basins,where 50% of the projeted world population in 2100 live. These basinsare listed in the appendix. In order to do this, we simulate 100 yearsof monthly runo� data for inreased global mean temperatures, rang-ing from 0.1K to 5K in steps of 0.1K. The sampling sequene of thedeviation patterns was as in the 20th entury. As desribed above, we�t a gamma distribution to the timeseries of annual maximum runo�and are thus able to assess the hange in probability of a runo� event ofequal magnitude to what was the 50-year maximum runo� event duringthe 20th entury.Results of this assessment for nine large river basins are shown inFig. 4. This �gure also shows the unertainty that arises through thedi�erene in GCM projetions, sine we use limate hange patternsgenerated by three di�erent GCMs. While temperature projetions bythe GCMs di�er only moderately, the preipitation hanges by thedi�erent GCMs di�er strongly. These models di�er in many details,espeially in their parameterizations of sub-gridsale proesses whihleads to quite di�erent preipitation projetions.The hanges in probability are quite heterogeneous. While the proba-bility P (Q50yr) of the 20th entury 50-year event Q50yr learly inreasesin some river basins, there are other river basins where the magnitude
Q50yr of the 50-year event is never reahed at all. Using the patterns gen-erated by ECHAM 3, shown as dashed lines, the probability inreasesmarkedly with rising temperatures in the Amazon, Parana, Chang Jiangand Mekong basins. Other river basins, namely the Mississippi, Amur,Makenzie and Danube river basins, experiene a marked derease in
P (Q50yr), while �ooding probability in the Yenisei basin �rst inreasesand then dereases again. The limate hange patterns produed byECHAM 4, shown as dash-dotted lines, give a similar overall piture,with the exeption of the Amur, Yenisei and Makenzie basins. The
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Figure 4. Changed probabilities for the 20th entury 50-year maximum runo� event(P = 0.02) depending on hange in global mean Temperature ∆T . Determined usinglimate hange patterns from ECHAM 3 (dashed line), ECHAM 4 (dash-dotted line)and HadCM 2 (dotted line).most interesting of these ases are the Yenisei and the Makenzie. WhileECHAM 3 simulates an inrease in P (Q50yr) at temperature hangesup to about 2K for the Yenisei basin, followed by a derease, ECHAM 4simulates a faster initial inrease followed by a short derease, whihis again followed by an inrease in probability. A similar behavior isapparent in the Makenzie basin. Here, both models projet an initialderease in P (Q50yr), but ECHAM 4 simulates an inrease in proba-bility at limate hanges larger than 2.75K, while ECHAM 3 projetsno further hange in P (Q50yr). This di�erene is due to hanges inthe annual yle of runo� in the ECHAM 4 model. While the patternsgenerated by ECHAM 3 projet that the annual maximum of runo�ours in May, ECHAM 4 simulates a shift of the annual maximum ofruno� to April, due to earlier snowmelt, and as evaporation is smallerin April due to both the shorter day length and lower temperatures,this generates inreases in �ooding probability. In the Amur basin,the di�erent projetion by the two models is simply due to di�erent
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Integrated assessment of hanges in �ooding probabilities 25preipitation projetions, with ECHAM 4 simulating inreases, whileECHAM 3 produes dereases in preipitation.Looking at the limate hange generated by HadCM 2, the largestdi�erene to the ECHAM models ours in the Mississippi basin, whereHadCM 2 projets an inrease in P (Q50yr), while the ECHAM modelssimulate a derease. This is one again due to di�erent preipitation pat-terns derived from the di�erent models. HadCM 2 projets an inreasein preipitation, while the ECHAM models projet a derease.5.2. Climate Impat Response FuntionClimate impat response funtions (CIRF) (Füssel et al., 2003; Füssel,2003) have been developed as redued form models in order to enablethe representation of the impats of limate hange in integrated assess-ment models. A CIRF is a representation of the relation between limatehange and CO2 onentration on the one hand, and the impat(s) of li-mate hange under onsideration on the other hand. While CIRFs wereembedded within a deterministi framework previously, the approahpresented here is the �rst attempt at using CIRFs in a probabilistisetting.In order to determine a CIRF that is a suitable indiator for hangesin �ooding probability on a global sale, the results on the sale ofsingle river basins have to be aggregated to the global sale in someway. Aggregating these hanges in probability to a global level � afterall we have performed this analysis in 83 of the largest river basins � isnontrivial, as the aggregation of the hange in probability over all riverbasins may very well mask the severity of the problem, as dereasingprobabilities in some river basins may mask the strong inreases inother river basins. Therefore we determine the population a�eted byinreasing probabilities of large runo� events. In order to do this, we usethe dataset of population density by CIESIN (2000), whih we extrapo-late to the population in 2100 by using the regionalized IIASA medianpopulation senario (Lutz et al., 2004), to determine the populationliving in the river basins analyzed.This measure may not quite represent the number of people thatare atually a�eted by the hange in �ooding probability. Not all thepeople living in a river basin will be a�eted by the hanged �ood-ing probability, but it seems safe to assume that the majority of thepopulation living in a river basin lives lose to the river and will there-fore be a�eted by the hange in �ooding probability. Furthermore,the overall damage by a �ood does a�et an entire region, e. g. bydemand for �naning of the reonstrution of destroyed infrastruture.Therefore the number of people living in a river basin is a reasonable
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26 T. Kleinen and G. Petshel-Held�rst approximation to the number of people a�eted by a hange in
P (Q50yr).Results for this analysis, derived using the limate hange patternsfrom the three GCMs, are shown in Fig. 5. Using the limate hangepatterns obtained from ECHAM 3, shown in Fig. 5, upper panel, onean see that the population a�eted by a hange in probability of theformer 50-year event Q50yr to to a 25-year event P (Q50yr) = 1/25(marked by plus signs) rises steeply for a global warming ∆T ≥ 0.3K.The rise in fration of world population a�eted then slows at a globalwarming ∆T = 0.5K, where about 15% of world population are a�eted.The fration of world population a�eted �nally reahes about 31% at
∆T = 5K. The non-smooth nature of these urves is due to to the fatthat one a basin rosses the threshold, it's population is added to thetotal at one. The large initial inrease in the plots for ECHAM 3 andECHAM 4, for example, is mainly due to the Ganges basin with it'sprojeted population of 762 million in 2100 rossing the threshold.This series of �gures also highlights the unertainty in these esti-mates. If one onsiders the fration of population obtained using thelimate hange patterns from ECHAM 4, shown in Fig. 5, middle, theoverall shape of the urves is similar to the the ones obtained usingECHAM 3, while the threshold temperatures may be somewhat shifted.Using HadCM 2, shown in Fig. 5, bottom, the overall piture is quitedi�erent. The frations of world population a�eted are signi�antlylower, and the inreases are less steep than in the ases using theECHAM models. This di�erene between the projetions by the di�er-ent models is largely due to the di�erent estimates of future monsoonrainfall. While the ECHAMmodels projet inreases in monsoon preip-itation, HadCM 2 projets a derease, and due to the large populationin the Ganges basin, this has a large e�et on the projeted populationa�eted.The dependene of the population a�eted by a hange in P (Q50yr)on limate hange shown in Fig. 5 an be interpreted as a CIRF withinthis ontext. This model-derived funtion relates the fration of worldpopulation a�eted by a hange in �ooding probability to the amountof limate hange ausing this hange in �ooding probability. In the�nal setion, this CIRF is used within the TWA to alulate emissionorridors, where the fration of world population living in river basinsa�eted by hanges in �ooding probability is limited.
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ECHAM 4: Population potentially affected by change in probability: 50 yr. event becomes...
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Figure 5. Fration of world population living in river basins a�eted by hangedprobability of 50 yr maximum runo� event P (Q50yr), dependent on hange in globalmean temperature ∆T . Climate hange patterns were taken from ECHAM 3 (upperpanel), ECHAM 4 (middle) and HadCM 2 (bottom). The legend for all plots isshown in the bottom panel.
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28 T. Kleinen and G. Petshel-Held6. Emission orridors limiting the hange in �oodingprobabilityIn the tolerable windows approah (TWA) (Petshel-Held et al., 1999;Toth, 2003; Brukner et al., 2003), the aim is to determine emissionorridors, i. e. the omplete set of emission redution strategies that areompatible with prede�ned normative onstraints. These onstraintsare alled �guardrails� in the TWA.In order to limit the population a�eted by a hange in �oodingprobability, the relation between hange in �ooding probability andtemperature hange, developed in Setion 5.2, an be used as a CIRFwithin the framework of the TWA.In order to obtain the emission orridors, we are using the ICLIPS li-mate model �rst presented in Petshel-Held et al. (1999) and desribedfurther by Kriegler and Brukner (2004). The model is kept as used byKriegler and Brukner (2004) with the exeption of two hanges. Firstof all, the referene period of the limatology we are using is 1961-1990.Therefore, this timeframe also de�nes the initial onditions the modeluses to alulate future limate states. Seondly, as the model ontainsjust a primitive arbon yle and no other greenhouse gases, we areusing a CO2-equivalent formulation. In this formulation, the radiativeforing by all foring agents is onverted to the CO2 onentration thatwould generate the same radiative foring. Climate sensitivity is set to
3K.As a guardrail, a normative onstraint that is not to be exeededby limate hange, various settings are possible. Here, we are onen-trating on the hange in probability of the 50-year maximum runo�event P (Q50yr), as alulated by the model when fored with 20thentury observed limate, yet other events an easily be used. We areusing P (Q50yr) for two reasons. First of all, we believe that it wouldbe misleading to estimate the size of events that have an even smallerprobability from a timeseries that is just 100 years long. Seond, theamount of runo� that is reahed or exeeded only one in 50 years isalready so large, that it seems plausible that this level will in many asesalready ause major damage to infrastruture and endanger humanlives, unless protetion measures are undertaken. The 50-year eventduring the 20th entury therefore seems to be a suitable benhmark toompare future limate states with. As guardrails we are using limitsto the population that live in the river basins a�eted by a hange in
P (Q50yr).Following Kriegler and Brukner (2004), three further onstraintsare imposed on the hange in emissions. The hange in emissions isparameterized as Ė = gE, and we are limiting the maximal emission
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Figure 6. Emission orridor limiting the hange in P (Q50yr). Maximal CO2 equiv-alent emissions allowable, if less than 20% of world population are to be a�etedby a hange in probability of the 50-year max. runo� event to the new probabilityshown in the legend. Based on the limate model ECHAM 3.redution to 4%p.a., as large emission redutions may be very ostly. Inaddition, we are also limiting the rate of hange in emission redution, asa ertain inertia in the soio-eonomi system has to be assumed. We areassuming a transition timesale ttrans of ttrans = 20 yrs from the initialrate of hange in emissions g0 to the maximal emission redution gmax =
−0.04. We are also assuming that the growth rate in emissions doesnot rise again, after emission redutions have started, for plausibilityreasons. The latter two onstraints an be summarized as 0 ≤ ġ ≤
−(g0 + gmax)/ttrans.The orridor boundaries are then alulated by performing a on-strained optimization, where the maximum (minimum) in emissionsallowed by the onstraints is determined for suessive points in time inorder to determine the upper (lower) boundary of the emission orridor(Leimbah and Brukner, 2001; Brukner et al., 2003). The initialgrowth in emissions g0 is determined by the optimization as well, but
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30 T. Kleinen and G. Petshel-Heldlimited to be between 1% p.a. and 3% p.a., whih is lose to the rangeof the late 20th entury growth in emissions.Fig. 6 shows suh emission orridors. These orridors show the CO2-equivalent emissions that are possible, if not more than 20% of theworld population in 2100 are to be a�eted by a hange in probabilityof the 50-year max. runo� event, based on the limate hange patternsgenerated by ECHAM 3. The plot shows the emission orridors for ahange of P (Q50yr) to the new probabilities shown in the legend. Theatual emission orridor is the total shaded area between the upperboundary of the respetive shaded area and the lower boundary of allthe shaded areas. Please note that the upper boundaries of the 30-year,shown as a dotted line with irles, and the 25-year emission orridors,shown as a dotted line with diamonds, are atually loated below thelower boundary. The emission orridors therefore are empty sets: onlyemission redution strategies that involve emission redutions largerthan 4% p.a. would produe a valid solution, and as we limit emissionredutions to 4% p.a. for soio-eonomi reasons, this guardrail annotbe observed.When interpreting these orridors, it is important to keep in mindthat the orridors derived this way are neessary orridors. This meansthat all emission strategies that lie outside the orridor, or leave theorridor at some point in time, de�nitely violate the guardrail. Foremission strategies that lie ompletely within the orridor, one has tohek, whether they violate the guardrails or not. Espeially emissionstrategies that stay lose to the upper boundary of the emission orridorfor most of the time are not aeptable. For further information on theinterpretation of emission orridors see Kriegler and Brukner (2004).Fig. 7 presents a di�erent perspetive to the emission orridors. InFig. 7, isolines are presented that mark the maximum of the emissionorridors for varying hanges in probability and population a�eted.This �gure also highlights the onsiderable unertainty that is stillinherent in this analysis, due to the di�erent limate hange patternsgenerated by the di�erent GCMs. Shown are isoline diagrams for theGCM patterns onsidered, with ECHAM 3 shown on the upper left,ECHAM 4 on the upper right, and HadCM 2 on the lower left. Onthe lower left-hand side of the �gures, no emission orridor exists thatould limit the population a�eted by the hanged �ooding probabilityto these numbers. This is due to the fat that the maximum in emissionsof the allowable minimum emissions trajetory is 9.4 GtC, due to thetransition time sale and the maximum emission redutions imposed,whih still implies a temperature hange of about 1.3◦C relative tothe 1961-1990 average global mean temperature. Emissions above amaximum of 60 GtC were not evaluated, sine these imply temperature
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Figure 7. Maximum CO2 equivalent emissions [GtC℄ of the emission orridors forthe limate hange patterns generated by all three GCMs. Shown are the maximal
CO2 equivalent emissions allowed, if the fration of world population, shown on theabsissa, a�eted by the hange in P (Q50yr) to the new probability shown on theordinate is to be limited. In the lower left hand orner of the three plots no viableemission orridors exist.
hanges larger than 5◦C � a temperature hange, where the simplelimate model we are using is not appliable any more.If the ECHAM models should prove to be orret, it will be impos-sible to prevent 20% of the world population from being a�eted bythe 50-year maximum runo� event beoming a 25-year event, and morethan 10% will be a�eted by even larger hanges in probability. Thisis mainly due to the large inreases in preipitation that the ECHAMmodels projet for the Ganges basin. If, on the other hand, HadCM 2should prove to be orret, the population a�eted will be less dramati,but it will still be impossible to prevent 10% of world population frombeing a�eted by a hange of the 50-year to a 40-year event.
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32 T. Kleinen and G. Petshel-Held7. Disussion and ConlusionsWe have presented an approah to allow the representation of hanges inprobabilities of large-sale �ood events in the integrated assessment oflimate hange. We have developed a downsaling sheme that enablesus to use the hanges in global mean temperature alulated by inte-grated assessment limate models to determine the hanges in preipi-tation and evaporation on a river basin sale, inluding a representationof natural variability. These are then used to drive a hydrologial modelthat aggregates the hanges to river basin sale, and an assessment ofhanges in �ooding probability an be performed.Throughout the paper we have attempted to be very lear aboutunertainties and shortomings in our approah, and some need to berepeated here.First of all, the type of �ood events that an be onsidered is quiterestrited. Due to limited temporal and spatial resolution, events onsmall spatial or temporal sales annot be onsidered adequately. This,unfortunately, is the prie one has to pay for onduting suh an as-sessment on a global sale, whih is, in our opinion, a neessity forthe integrated assessment of limate hange. On the other hand, themodel validation shows that model performane is satisfatory for large-sale events, the so-alled plain �oods, and here model performaneatually improves for the assessment of extreme events, as omparedto the performane for the mean �ows. We think, therefore, that ourassessment of hanges in �ooding probability is meaningful.A seond major shortoming is the unertainty that omes from thedi�erent hanges in the mean limate that are projeted by di�erentGCMs. This unertainty has to be aepted for the time being. We tryto inorporate it by using limate hange patterns derived from di�erentGCMs, but the representation of this unertainty an still be improved.The third problem is the assumption that spatio-temporal variabilityof limate will stay the same in a hanged limate. It is likely that thiswill not be the ase, and there is evidene from the diagnosis of someGCM simulations (e. g. Kharin and Zwiers, 2000), that limate hangemay atually inrease probabilities of extreme preipitation events andtherefore �oods. One again there is sope for improvement of ourapproah, and our results may turn out to be a lower bound on thehange in probability.The shortomings of our approah an, unfortunately, not be avoidedompletely when dealing with this subjet matter on a global sale. Onthe other hand, this is the �rst assessment of this nature on this salethat we are aware of, and future developments will undoubtedly allowimprovements to be made. At the same time we �rmly believe that in-
Kleinen_Petshel-Held-2006.tex; 12/06/2006; 10:22; p.32



Integrated assessment of hanges in �ooding probabilities 33tegrated assessment has to take into aount hanges in extreme eventsbeause it is through these hanges that many of the most widespreadonsequenes of limate hange will be felt.The modeling results presented in the previous setions suggest thathanges in the probability of large sale �ooding due to hanges in pre-ipitation indued by future limate hange might have a severe impaton a signi�ant portion of the world's population. Not only does thesimulation with a single limate hange senario as in Se. 5.1 suggest aninrease in probabilities for large sale �oods, but even more signi�antare the results obtained within the appliation of the tolerable windowsapproah.Within this appliation of the TWA, the portion of the world popu-lation experiening an inreased probability of what is today a 50-yearevent has been implemented as a onstraint for future limate hange.Within this �rst step, a limate impat response funtion (CIRF) is im-plemented, whih is based on the hydrologial model presented before.This CIRF gives the proportion of world population whih experienes aspei�ed shift in �ooding probabilities as a funtion of the global meantemperature. In a seond step, the orridors of admissible emissionswere alulated, whih omply with this onstraint and whih do notexeed a redution rate of more than 4% p.a. Both the limate impatresponse funtion and the resulting orridors suggest that:
− There is a signi�ant risk that even a small inrease in global meantemperature by less than 0.5◦C brings about a signi�ant inreasein �ooding probabilities whih an a�et up to 20% of the worldpopulation. Here, results di�er with di�erent spatial patterns oflimate hange obtained from three GCMs. More spei�ally, therisk depends on the fate of the Indian Monsoon, as the two ECHAMGCMs both show a strengthening. Therefore, the unertaintiesassoiated the future behavior of the monsoon are not only ofrelevane for agriulture, but also for �oods.
− If the hanges in mean limate projeted by the ECHAM modelsshould turn out to be right, there is no reasonable emission senarioto insure that only small proportions of the world population area�eted by inreases in the probabilities of major �oods. If, forexample, we onsider a proportion of 20% of the world population,we have to rekon with shifts in probabilities, where what has beena 50 yr event in the 20th entury beomes at least a 25 yr eventover the next 100 years.
− The danger of suh unavoidable onsequenes of limate hangeimplies that adaptation to inreasing �ooding probabilities are in-
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34 T. Kleinen and G. Petshel-Heldevitable. Given the possibility that these shifts might happen withrelatively small inreases in global mean temperature, adaptationmeasures need to be taken soon, whih alls for an inreasing e�ortto study and understand the proesses of adaptation.Despite all the unertainties mentioned, these onlusions are quiterobust, and we onsider the model as good enough to onlude that aninrease in �ooding probabilities is a major reason for onern aboutlimate hange. Inreased modeling e�orts need to be undertaken to lo-alize the ritial regions for inreased �ooding, in order to get improvedinformation for adaptation priorities.AknowledgementsWe gratefully aknowledge the helpful suggestions by Zbigniew Kundzewizand an anonymous reviewer. T. K. aknowledges support by the Volk-swagen foundation and by the Deutshe Forshungsgemeinshaft.
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Integrated assessment of hanges in �ooding probabilities 35AppendixA. List of river basins onsideredTable III. River basins onsidered in the assessment. Listed are river basin name, populationin 2100 in Millions, and river basin area in 105km2.Name Pop. 2100 [106℄ Area [105
km

2℄ Name Pop. 2100 [106℄ Area [105
km

2℄Ganges 762 16.33 Sao Franiso 23 6.17Indus 284 11.46 Ob 22 25.77Niger 180 22.46 Chao Phraya 21 1.42Zaire 157 37.09 Galana 21 1.18Huang He 128 8.96 Elbe 20 1.49Parana 128 26.69 Brahmani 19 0.58Huai 125 2.45 Cross 19 0.52Krishna 108 2.52 Rabarmati 19 0.28Mississippi 104 32.12 Dnepr 19 5.10Godavari 100 3.12 Panuo 18 0.92Hai Ho 93 2.46 Po 18 1.02Shatt el Arab 87 9.70 Mahi 17 0.29Zhujiang 80 4.10 Saramento 17 1.93Zambezi 79 19.94 Tana (Ken) 16 0.99St. Lawrene 71 12.70 Kizil Irmak 15 1.10Damodar 61 0.60 Penner 15 0.54Amur 61 29.11 Wisla 15 1.81Mekong 60 7.76 Seine 13 0.74Danube 54 7.90 Dongjiang 13 0.34Amazon 50 58.70 Senegal 13 8.50Balsas 48 1.23 Paraiba do Sul 13 0.63Brahmani 46 1.42 Don 12 4.24Syr-Darya 44 10.73 Menjiang 12 0.66Volta 44 3.99 Meuse 11 0.43Amu-Darya 43 6.14 Jaui 11 0.81Limpopo 43 4.21 Kura 11 2.20Magdalena 42 2.52 Hudson 11 0.43Rhine 41 1.66 Ru�ji 11 1.87Irrawaddy 40 4.07 Trinity 11 0.48Volga 35 14.67 Urugay 10 3.56Cauweri 35 0.79 Farah 10 3.86Liao 34 2.75 Bandama 10 1.04Jubba 34 8.18 Columbia 10 7.26Narmada 32 1.14 Cuanza 10 1.64Grande de Santiago 31 1.92 Cheli� 9 0.58Tapti 28 0.67 Sebou 9 0.39Chari 27 15.76 Motagua 9 0.27Jordan 27 2.70 Asi 9 0.28Orange 24 9.46 Comoe 9 0.83Orinoo 24 10.42 Odra 9 1.20Fuhun Jiang 23 0.67 Sassandra 9 0.77Hong 23 1.71
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