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A common shortcoming of available multi-regional input–output (MRIO) data sets is their lack of regional and
sectoral detail required for many research questions (e.g. in the field of disaster impact analysis). We present a
simple algorithm to refine MRIO tables regionally and/or sectorally. By the use of proxy data, each MRIO flow
in question is disaggregated into the corresponding sub-flows. This downscaling procedure is complemented by
an adjustment rule ensuring that the sub-flows match the superordinate flow in sum. The approximation improves
along several iteration steps. The algorithm unfolds its strength through the flexible combination of multiple,
possibly incomplete proxy data sources. It is also flexible in a sense that any target sector and region resolution
can be chosen. As an exemplary case we apply the algorithm to a regional and sectoral refinement of the Eora
MRIO database.
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1. INTRODUCTION

Large-scale economic structures have changed considerably over the last decades: in the
course of globalization, international supply and value-added chains have become increas-
ingly integrated and complex (Wiedmann et al., 2011a). While it is as crucial as it is
difficult to collect detailed quantitative information on this complex network, the pro-
cess inevitably gives rise to a large variety of formerly unforeseen cause–consequence
relations. The individual links of the global supply chains are at risk from external pertur-
bations, which may be of economic, social, political or ecological origin. In the context
of global climate change, Levermann (2014) emphasizes the consequences of increasingly
integrated economic networks for the vulnerability of world markets to single extreme
weather events. Particular impacts loom even more as climate model simulations pre-
dict extreme events to become more intense and (most likely) more frequent in the future
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2 L. WENZ et al.

(Rahmstorf and Coumou, 2011; IPCC, 2012; IPCC, 2014). Given the growing environmen-
tal pressures, direct and indirect transnational impacts of natural and man-made disasters
on global commodity flows supplying industrial, public and private demand need to be
examined.

The problem of assessing the vulnerability of economic systems including higher order
effects has been addressed by different frameworks. An overview of methodologies which
analyze the direct and indirect economic losses of disasters based on (multi-regional)
input–output (I–O) data is given in Okuyama and Santos (2014). These methodologies can
mainly be classified into three approaches: (1) I–O models (as in Hallegatte, 2008, 2014;
Jonkeren and Giannopoulos, 2014), (2) social accounting matrices (SAM, as in Okuyama
and Sahin, 2009) and (3) computable general equilibrium (CGE) models (as in Haddad and
Okuyama, 2012; Haddad and Teixeira, 2013).

Multi-regional input–output (MRIO) tables are systematically assembled and harmo-
nized by projects like the Eora MRIO database (Lenzen et al., 2012), the Global Trade
Analysis Project (GTAP, Narayanan et al., 2012) or the World Input-Output Database
(WIOD, Dietzenbacher et al., 2013).1 Even though these databases are covering a consid-
erably large number of regions, they do not go deeper than the country level. Specifically,
but not exclusively for large countries such as China or the USA, economic activities differ
substantially across their subregions (e.g. Su et al., 2010). Thus, a high regional resolution
is required for disaster impact analysis. The same argument holds for the sectoral dimen-
sion of disaster-induced supply-change cascades. In this regard, Wiedmann et al. (2011a)
state that “most current initiatives do not provide for maximum sector disaggregation but
opt for a compromise between the number of sectors and countries”.

The problem of coarse sector resolution is also well known in I–O-based life cycle
assessment (LCA; e.g. Suh and Nakamura, 2007). LCA modeling frameworks aim at
assessing the whole life cycle of a good or service, for example, with respect to emis-
sions. Basically, there are two different approaches: a bottom-up process analysis and a
top-down I–O analysis. While I–O LCA often lacks suffiently detailed data, process LCA
cannot always provide for system completeness (Rebitzer et al., 2004). Bullard et al. (1978)
introduced the notion of ‘hybrid analysis’ by proposing a framework that combines process
and I–O analysis to overcome the limitations of both. This has entailed a large number of
follow-up studies (Moriguchi et al., 1993; Suh and Huppes, 2002; Stromman and Hertwich,
2004; Suh, 2004).

In the context of environmental I–O analysis, Lenzen (2011) highlights the sectoral
‘aggregation bias’ to be problematic. Since in particular environmentally sensitive sec-
tors are frequently aggregated in I–O data, he strongly advocates a disaggregation even if
it is based on a small amount of proxy information only.

Hence, not only the analysis of cascading effects induced by disaster impacts but also
many other research questions require a high resolution along the regional and sectoral
dimension.2 However, as data incompleteness typically is a major challenge for compiling

1 In some cases, the MRIO tables are replaced by more precise supply-use tables, which are capable of capturing
the full diversity of different commodities that different industries may consume and produce instead of assuming
a one-to-one relationship of commodities and industries.
2 Even beyond standard I–O analysis there is a need for MRIO data sets with increased sectoral resolution, for
example, in the field of studies of structural change and growth processes (Radebach et al., 2014).
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 3

MRIO tables,3 it is particularly difficult to provide MRIO data at high regional and sectoral
detail. Some economic information is available at very high detail, though, for instance
global export data (e.g. Base pour l’Analyse du Commerce International with + 5,000
sectors for + 200 countries (Gaulier and Zignago, 2009)) or specific national I–O data
(e.g. US Bureau of Economic Analysis (BEA) annual I–O data (2014)).

A recent approach has been undertaken by Lenzen et al. (2014). They propose compiling
an MRIO table designed for each specific research question by aggregating root data of
very high resolution. Since this table only requires a certain level of detail, they yield
computationally manageable matrices. However, the application of this method depends
on the completeness of the root data.

In the past, attempts of sectoral disaggregation often did not focus on the actual eco-
nomic flows but on the technical coefficient matrix A or the Leontief Inverse L =
(I − A)−1, where I denotes the unit matrix of (environmental) I–O models. Wolsky (1984)
proposes a routine for constructing a sectorally refined I–O model from an available model
using information that was aggregated when this available model was built. This approach
requires information that is generally not available. Stating that a useful disaggregation
method should rely on data less costly to obtain than those needed for the direct estimation
of relevant data, Gillen and Guccione (1990) present an algorithm to estimate a refined
technical coefficient matrix A from information on final demand, gross output, and input
and output prices. Lindner et al. (2012) point out that the unknown coefficients of the
Leontief Inverse of an I–O model are not unique. They suggest constructing a probability
distribution based on a random-walk algorithm to explore all coefficient combinations.

Wiedmann et al. (2011b) apply a pro-rata disaggregation to split the electricity industry
when analyzing the indirect emissions of wind power in the UK. The same approach is used
by Liu et al. (2012) to demonstrate the heterogeneous emission intensities of Taiwanese
electricity subsectors.

Aleexeva-Talebi et al. (2012) deal with sectoral disaggregation in a CGE modeling
framework. For the disaggregation of energy-intensive and trade-exposed sectors in the
GTAP database, they extract subsectors from the aggregate sector by proceeding additional
data on production, imports and exports as well as intermediate and final demand.

In terms of disaggregation in the regional dimension, Flegg’s Location Quotient
(FLQ) was developed to deduce regional flows from national I–O data using additional
region-specific information (e.g. Flegg et al., 1995; Kowalewksi, 2013). Furthermore, the
Regional Input–Output Modeling System (RIMS) commercially provided by BEA pro-
duces macro-economic multipliers for regional projections of economic impacts in the
USA.

Here, we present a disaggregation algorithm that is simple, generally applicable and
computationally efficient.4 Its main idea is to combine raw data of multiple data sources
to yield a compromise between data accuracy and data availability. The algorithm basi-
cally is an iteration of the following two steps: first, a given large-scale MRIO flow is
refined sectorally and/or regionally on the sub-level by the use of suitable refinement prox-
ies reflecting the sub-flows’ contributions to the superordinate flow. These proxies can, for

3 Approaches to deal with this problem are, among others, the RAS (Stone and Brown, 1962), the cRAS (con-
strained RAS, Lenzen et al., 2006) and the GRIT (Generation of Regional Input-Output Tables) algorithm (Bayne
and West, 1989).
4 Available as open source at http://github.com/swillner/disaggregation.
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4 L. WENZ et al.

example, be based on gross domestic product (GDP), exports and imports. It is central to
the method that they are not required to be homogeneous. Second, all sub-flows that were
approximated at a low level of precision are adjusted with respect to the flows of a higher
level of precision in order to match the superordinate flow in sum.

This approach, which will be detailed in Section 2, has some advantages compared to
other more comprehensive approaches. Since it does not approximate a technical coeffi-
cient matrix or a Leontief Inverse but simply enlarges an existing MRIO table, it can be
used for all kind of research foci. Furthermore, it can make use of different kinds of proxy
data that are available. This multi-sourcing approach enables the combination of different
proxies for input and output flows. If a proxy is available that is considered to be better
suited for the approximation of a certain flow, all related flows are automatically adjusted
accordingly. The enlarged MRIO table can thus become more and more accurate. Since
harmonizing or inverting procedures are not required, there are neither artificially produced
flows nor major computational constraints. The algorithm keeps the data assembling and
computing effort minimal.

Despite these advantages it is important to note that the algorithm provides approxima-
tions which will generally deviate from the ‘real’ values. The accuracy of an approximated
sub-flow depends on three aspects. First, it is determined by the reliability of the refine-
ment proxy and of the underlying base table, which cannot be assessed by the algorithm.
Second, it depends on how strongly the proxy constrains the sub-flow. Third, due to the
adjustment step of the algorithm, it may be increased if many of the sub-flows that are
derived from the same superordinate flow are approximated by more precise proxy data.

The paper is organized as follows: a description of the algorithm for disaggregating
MRIO tables is given in Section 2. Subsequently, we investigate its performance by exem-
plifying a sectoral and a regional disaggregation procedure in Section 3. More precisely,
we firstly extend the 26 US sectors given by the Eora MRIO database for 2011 to 71 sec-
tors using GDP and export data by BEA. Then, we compare the enlarged MRIO table to
existing data at this scale. Secondly, we refine the Eora 2011 MRIO table by subdividing
the USA into its 51 states (incl. the District of Colombia) where we deduce the respective
input and output sub-flows from subregional GDP and subregional GDP-by-industry data
provided by BEA. We contrast these approximations with data provided by the Economic
Research Service of the US Department of Agriculture (USDA; USDA-ERS, 2014). Then,
we shortly describe the large-scale application of our algorithm within the zeean com-
munity data platform (www.zeean.net). We conclude with an overview on strengths and
limitations of our approach in Section 4.

2. THE REFINEMENT ALGORITHM

The general concept of the refinement algorithm is the following: starting from a given
MRIO table the flows to be disaggregated have to be defined as well as the final subregions
and/or subsectors, that is, the target classification. Then, a set of proxies in a hierarchical
order (by suitability) has to be chosen that can be used for approximating the flows at
the sub-level. All these values are the input of the algorithm. In a first step, the algorithm
disaggregates the initial flows into the correspondent sub-flows by equal distribution or by
proxy data if the same type of proxy is given for all sub-flows. This first approximation
of sub-flows is then improved by iterating over the hierarchy of proxies. Each iteration
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 5

step consists of two sub-steps. First the approximation is improved for those sub-flows
for which a proxy is given at the current level of hierarchy (the approximation part of the
algorithm). Second, the remaining sub-flows are adjusted to match the initial flow in sum
(the adjustment part of the algorithm).

In the following subsections, we describe the algorithm in detail. After providing all
necessary definitions in Section 2.1, we propose a hierarchy of refinement proxies required
as input for the algorithm in Section 2.2. In Section 2.3, we describe the algorithm, and
in Section 2.4, we conclude by presenting a method to roughly assess the quality of its
outcome.

2.1. Definitions

Let Z be an MRIO table, the base table, whose regional and sectoral detail shall be
increased. Let r be the region to be disaggregated into n subregions. The latter are denoted
by the set Rr = {rλ}λ=1,...,n. Let i be the sector to be disaggregated into m subsectors repre-
sented by the set Ii = {iμ}μ=1,...,m. Note that both sets Rr and Ii can consist of one element
only. Further, sector i can be disaggregated in region r only or in several or in all regions
represented in Z. The set of subsectors Ii may even vary between different regions.

The algorithm is applied to each flow of the original MRIO table that refers to region
r or sector i, that is, to each flow that is going to (incoming) or coming from (outgoing)
the region and/or sector in question. Exemplarily, we demonstrate its functionality for an
outgoing flow, denoted by Zir→js, where j is an arbitrary target sector and s an arbitrary
target region and i and r are the sector and region from which the flow originates. Incoming
flows Zjs→ir can be dealt with analogously when altering the algorithm inputs accordingly.
Intraregional flows Zir→jr or intra-sectoral flows Zir→is are disaggregated by applying the
algorithm to the incoming and outgoing side, respectively.

The algorithm disaggregates the flow Zir→js into m · n sub-flows Ziμrλ→js by splitting
it into smaller values that sum up to the initial value. These values, that is, the amount to
which each sub-flow Ziμrλ→js contributes to Zir→js, are determined by proxy data. A set of
‘refinement proxies’ must thus be provided as an input for the algorithm. More precisely,
at least one refinement proxy v(d)

ir→js(λ, μ) is required for each sub-flow. Ideally, the actual
sub-flow itself can be given as an input. If this is not possible, a proxy should be used that
reflects the importance of the sub-flow for the aggregate flow as precisely as possible. For
different sub-flows, the corresponding refinement proxy may be derived from different data
sources and the set of all proxies does not have to be homogeneous (resembling the multi-
sourcing aspect of the algorithm). Depending on their associated proxy, some sub-flows
might hence be approximated more precisely by the algorithm than others.

Before starting the algorithm, all proxies used for disaggregating the flow Zir→js have
to be brought into a hierarchical order. This ranking should reflect how well each proxy
is considered to be suited for the approximation procedure. In the following, we refer to a
proxy’s ranking level as its ‘level of detail d’ or its ‘d-level’. The higher a proxy’s d-level,
the more impact it has on the final value of the corresponding sub-flow. This is due to the
adjustment of the approximation along the hierarchical order of proxies.

We introduce a set Ed that comprises for each d-level all pairs of sub-flow indices (λ, μ)

a proxy at that level is given for:

Ed := {(λ, μ)|v(d)
ir→js(λ, μ) given}. (1)
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6 L. WENZ et al.

A sub-flow Z(d, approx.)
iμrλ→js is called ‘approximated’ at level d when a refinement proxy

v(d)
ir→js(λ, μ) at this level is available. Otherwise the sub-flow is adjusted such that the sum

of all sub-flows equals the initial aggregate flow (see Section 2.3 for more information on
that part of the algorithm). We denote the outcome of the iteration corresponding to level
d by Z(d)

iμrλ→js.

2.2. Refinement Proxies

Table 1 proposes a hierarchy of proxies for disaggregating an outgoing flow Zir→js. This
hierarchy is motivated by the following consideration: a sub-flow Ziμrλ→js of this flow is
characterized by the six indices i, iμ, r, rλ, j, s. The more indices a proxy comprises, the
more rigorously the sub-flow is constrained and the better the approximation quality will
be. In general, a high d-level is to represent a high approximation quality under the chosen
assessment.

TABLE 1. Refinement proxies for an outgoing flow together with their detail ranking as applied
in this study and the associated approximation procedure.

Level d= Refinement proxy v(d)
ir→js(λ, μ) := Approximation Z(d, approx.)

iμrλ→js :=

0 Equal distribution: |Ii| · |Rr| Zir→js

|Ii|·|Rr|

1 Population of subregion: POPrλ

(
n∑

λ′=1
Z(d−1)

iμrλ′ →js

)
· POPrλ

POPr

2 Subregional GDP: GDPrλ

(
n∑

λ′=1
Z(d−1)

iμrλ′→js

)
· GDPrλ

GDPr

3 Regional GDP-by-sub-industry: GDPiμr

(
m∑

μ′=1
Z(d−1)

iμ′ rλ→js

)
· GDPiμr

GDPir

4 Subregional GDP-by-sub-industry:
GDPiμrλ

Zir→js · GDPiμrλ
GDPir

5 Import of subsector by region: Ziμ→s

(
m∑

μ′=1
Z(d−1)

iμ′ rλ→js

)
· Ziμ→s∑

r′
∑

j′ Zir′→j′s

6 Export from subregional subsector
Ziμrλ→

Zir→js · Ziμrλ→∑
j′
∑

s′ Zir→j′s′

7 Import of subsector by regional sector:
Ziμ→js

(
m∑

μ′=1
Z(d−1)

iμ′ rλ→js

)
· Ziμ→js∑

r′ Zir′→js

8 Export from subregional subsector to
region: Ziμrλ→s

Zir→js · Ziμrλ→s∑
j′ Zir→j′s

9 d = 5, 7, 8 together: Ziμ→js, Ziμrλ→s
and Ziμ→s

Ziμ→js · Ziμrλ→s

Ziμ→s
(Peters et al., 2011)

10 Exact flow: Ziμrλ→js Ziμrλ→js

Notes: Column 2 gives potential refinement proxies for disaggregating an outgoing flow regionally and sectorally.
Column 3 shows the corresponding approximation as it is performed by the algorithm. Up to level d = 4, the
approximation is based on weights. From level d = 5 on, flows are used.
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 7

At level d = 0, the refinement proxy has to be chosen such that it is given for all
sub-flows. Since no flows of a precedent level are available, an adjustment is not possi-
ble and all sub-flows must be approximated. The simplest approach is to distribute the
superordinate flow equally to all sub-flows:

Z(0, approx.)
iμrλ→js = Zir→js

|Rr| · |Ii| ; (2)

where |Rr| = n denotes the number of subregions and |Ii| = m the number of subsectors.
The corresponding refinement proxy that is always available reads

v(0)
ir→js(λ, μ) = |Rr| · |Ii|. (3)

As this kind of proxy is already determined by the choice of refinement, it is merely no
real proxy but the first canonical way of refinement. It can always be chosen if no proper
proxy is available.

Regionally, the population density of a subregion compared to that of the superordinate
region could be taken as a more precise refinement proxy (d = 1). Further, data on the GDP
constitute a quite easily accessible but more precise refinement proxy. The GDP of a coun-
try as a measure of its overall economic activity represents the total value of final goods
and services produced within this country in a given period of time. It is often not only
provided for countries but also for smaller administrative units. In this case, the quotient
of GDP of subregion rλ and GDP of region r can be regarded as a measure for the eco-
nomic importance of subregion rλ within region r and thus be used for the approximation
procedure:

Z(2, approx.)
iμrλ→js =

(
n∑

λ′=1

Z(1)
iμrλ′ →js

)
· GDPrλ

GDPr
. (4)

Since this proxy is only useful for a regional disaggregation, the subsectoral information∑n
λ′=1 Z(1)

iμrλ′ →js of level d = 1 is kept.
On the downside, the application of regional GDP data implies that the economic struc-

ture of region r is transferred to all its subregions rλ ∈ Rr. This is disputable as different
geographical conditions suggest an inhomogeneous distribution pattern of sectors. While
some subregions have a high agricultural output, others specialized on manufacturing sec-
tors. It is therefore desirable to refine this approach by taking sectoral information into
account as well. Some statistical agencies provide GDP data that are resolved sector-wise.
If such data for subsectors or for subsectors per subregion are available, the approxima-
tion can be improved using quotients GDPiμr/GDPir (d = 3) and GDPiμrλ

/GDPir (d = 4),
respectively. As sector classifications may differ from one country to another, it is possible
that GDP is given for other industries than those represented in the MRIO table or those
desired for the subsector level. In this case, a sector mapping is required.

So far, no refinement proxy has included information on the target region s and the target
sector j. In order to address trade-specific patterns, export and import data could be consid-
ered. For instance, these could be import of subsector by region (Ziμ→s, d = 5), export of
subregional subsector to all other regions (Ziμrλ→, d = 6), import of subsector by regional
sector (Ziμ→js , d = 7) and export from sub-regional subsector to a region (Ziμrλ→s, d = 8).
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8 L. WENZ et al.

Here, exports are ranked higher than imports because an outgoing flow is to be disag-
gregated. For the disaggregation of an incoming flow, this hierarchy has to be altered
accordingly.

Importantly, there is no need to translate these flows into weights as it was necessary up
to list level d = 4, but they can directly be used for an approximation as shown in Table 1.

If three different export and import flows are available, the following formula proposed
by Peters et al. (2011) can be applied:

Z(9, approx.)
iμrλ→js = Ziμ→js · Ziμrλ→s

Ziμ→s
. (5)

If the actual sub-flow itself is given, it is ranked at the highest d-level (d = 10).
For an incoming flow similar proxies can be chosen. With respect to intraregional flows,

national I–O tables, which are available for certain countries at a high level of sectoral
detail, can be integrated into an MRIO table as follows: the intraregional flows are simply
adopted, whereas import and export flows are approximated by the algorithm.

2.3. Algorithm

The algorithm is defined as follows (see Box 1 for pseudo-code and Figure 1 for a
schematic illustration): it starts by disaggregating the flows in question of the initial MRIO
table into the correspondent sub-flows. This is carried out by equal distribution (d = 0
in Table 1) or by the use of proxies (d > 0) if the same proxy type is available for
all sub-flows. Subsequently, the algorithm iterates over all remaining levels d. At each
level it checks for each subsector–subregion index pair (λ, μ) whether a refinement proxy
v(d)

ir→js(λ, μ) is given, that is, if (λ, μ) ∈ Ed . If this is the case, the corresponding sub-flow

Z(d)
iμrλ→js is set

Z(d)
iμrλ→js = Z(d, approx.)

iμrλ→js ; (6)

where Z(d, approx.)
iμrλ→js is deduced from Zir→js by the use of v(d)

ir→js(λ, μ) as shown in Table 1. For
all index pairs (λ, μ) that have no refinement proxy at this level, an adjustment procedure
is applied: the difference between the superordinate flow Zir→js and the sum of all flows
approximated at this level is distributed among the remaining flows considering their size
at the precedent level:

Z(d)
iμrλ→js =

⎛
⎝Zir→js −

∑
(λ′, μ′)∈Ed

Z(d)
iμ′ rλ

′→js

⎞
⎠ ·

Z(d−1)
iμrλ→js∑

(λ′, μ′)/∈Ed
Z(d−1)

iμ′ rλ′→js

. (7)

This component of the algorithm does not refer to the balancing of row and column totals
of MRIO tables and is hence not to be confused with such methods. The original MRIO
balance of row and column totals is preserved by the algorithm at the aggregate level.
Only if flows instead of weights are used for the approximation procedure (i.e. list level
d ≥ 5 in Table 1), the set of all approximated sub-flows does not necessarily sum up to the
superordinate flow. This is especially problematic if it exceeds the superordinate flow. In
this case, it has to be decided whether the superordinate flow or the approximated flows

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 1

5:
31

 0
5 

Fe
br

ua
ry

 2
01

5 



REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 9

Algorithm
To disaggregate a flow Zir→js with respect to i and r

q = maximum level
For d = 0:

For each λ ∈ [1, . . . , n], μ ∈ [1, . . . , m]:

Approximate: Z(0)
iμrλ→js = Z(0,approx.)

iμrλ→js
For each d ∈ [1, q]:

Ed := {(λ, μ)|v(d)
ir→js(λ, μ)given}

For each (λ, μ) ∈ Ed :
Approximate: Z(d)

iμrλ→js = Z(d,approx.)
iμrλ→js

For each (λ, μ) /∈ Ed :

Adjust: Z(d)
iμrλ→js =

(
Zir→js −∑

(λ′,μ′)∈Ed
Z(d)

iμ′ rλ′ →js

)
· Z(d−1)

iμrλ→js∑
(λ′ ,μ′)/∈Ed

Z(d−1)
i
μ′ r

λ′ →js

Ziμrλ→js := Z(q)

iμrλ→js

BOX 1. Algorithm to refine an outgoing flow. An approximation is performed if a suitable proxy
at the respective d-level is available. Otherwise the flow of the (d−1)-level is adjusted according to
those flows that could be approximated. At level d = 0 all sub-flows have to be approximated, for
example, by distributing the superordinate flow equally among them.

are altered. The decision can, for example, be based on plausibility checks or confidence
intervals. Here, we propose to leave the superordinate flow unchanged unless all sub-flows
have been derived by the formula of Peters et al. (d = 9 in Table 1) or unless all the sub-
flows themselves have been given (d = 10). Then, a rebalancing of the original aggregate
matrix has to be considered. In all other cases, the approximated flows are mistrusted and
the difference is distributed equally among them.

After having iterated all levels, each sub-flow Ziμrλ→js is transcribed to the correspond-
ing approximated or adjusted flow of the highest d-level.

As mentioned at the beginning of this section, the algorithm can be applied analogously
to incoming flows or flows to final demand if the refinement proxies and their associ-
ated d-levels are altered accordingly. With respect to intra-sectoral and intraregional flows
Zir→ir, the algorithm requires proxies for the incoming and outgoing side. Here, we do not
provide for a disaggregation of value-added data. By the use of appropriate proxies, the
algorithm can also be applied to value-added data. It then has to be complemented by a
balancing procedure in order to guarantee equilibrium of total input and total output not
only at the superordinate but also at the sub-level.

After having applied the algorithm to each flow of the initial transaction matrix that
refers to region r and/or sector i, these are replaced by their corresponding subregions and
subsectors.

2.4. Quality of Outcome

Since the application of the algorithm will generally not result in a perfectly accurate data
set, that is, a data set perfectly reflecting real-world flows, the approximated and adjusted
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10 L. WENZ et al.

FIGURE 1. Schematic illustration of the refinement algorithm.

Notes: The table comprises all proxies used as inputs for the algorithm. They are hierarchically
ranked with q denoting the highest level. The last column indicates if the same proxy type is given for
all sub-flows that correspond to a flow to be disaggregated. If this is the case, only the approximation
step of the algorithm is performed at this level. If not, the approximation procedure is complemented
by the adjustment step. The algorithm iterates over all levels. At level 0 it uses the associated proxies
to refine the initial MRIO table. It then improves this table with the help of the proxies of level 1, etc.
At level q a refined table has been constructed in which each sub-flow has been approximated by the
best proxy information available.

flows of an extended MRIO table have to be considered with caution. Particularly, it is
important to keep the highest d-level in mind at which a real approximation (instead of an
adjustment) was performed. For this purpose, we propose the following quality measure
that can be associated with each sub-flow:

Qiμrλ→js := max{0 � d � q : (λ, μ) ∈ Ed}. (8)

It equals the highest d-level at which a proxy was available for that sub-flow. As the
proxies are ranked according to their (assumed) suitability for approximation, flows with
a high-quality measure Qiμrλ→js are likely to approximate the ‘real’ sub-flow better than
those with a smaller quality measure. This assessment clearly depends on the hierarchy of
proxies chosen (as in Table 1) and has to be interpreted along the quality one assigns to the
proxies of a particular level. Dependent on the kind of analysis that is performed based on
the extended MRIO table, it might be reasonable to complement this first assessment by an
additional analytical or numerical error analysis.
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 11

3. PERFORMANCE OF THE REFINEMENT ALGORITHM

In this section, we exemplify the performance of the refinement algorithm in two different
setups. In Sections 3.1 and 3.2, the Eora MRIO database is extended sectorally and region-
ally, respectively, using data on GDP and exports provided by the US BEA (2014). The
enlarged MRIO tables are then compared to existing data on similar flows. Subsequently,
we present the large-scale application of the approach within the community data platform
zeean in Section 3.3.

3.1. Example 1: Sectoral Disaggregation of the USA within the Eora MRIO
Database

Here, we apply the algorithm to a sectoral disaggregation. Proceeding from an Eora MRIO
table for 2011 (Lenzen et al., 2012) and neglecting all flows smaller than 1M USD (which
in sum contribute less than 0.6% to the total flow volume), we enlarge the US sector reso-
lution using data on GDP and exports. Our example focusses on the USA because data are
available at a high sector detail to compare our results to.

Eora provides two MRIO tables for 2011: a homogeneous table covering annual mon-
etary flows in USD for 26 sectors and final demand in 186 countries and an MRIO table
with heterogeneous sector resolution. The latter comprises flows for 429 US sectors. Since
this exercise is destined to simply illustrate the quality of the algorithm’s outcome com-
pared to existing data, we aggregate the 429 US sectors to 26. We then apply the algorithm
to increase this sector resolution to 71 sectors. In addition, we aggregate the US flows of
the heterogeneous Eora MRIO table to the same 71 sectors such that the US flows of both
matrices are comparable.

As refinement proxies we first use sectorally resolved GDP data, that is, GDP-by-
industry data published by BEA for 69 sectors for the year 2011 (BEA, Industry Data,
2011). A sectoral mapping is required that assigns a superordinate sector, that is, one of the
26 Eora sectors, to each of these 69 sectors. Since BEA provides no analogous category
for four sectors (‘Recycling’, ‘Private Households’, ‘Others’, ‘Re-Export & Re-Import’) of
the Eora base table, the corresponding flows are not disaggregated but simply transcribed
to the extended MRIO table. To some sectors only one subsector can be assigned. These
are not disaggregated either. Three BEA sectors (‘Food and Beverage Stores’, ‘General
Merchandise Stores’, ‘Other Retail’) are on the contrary merged into one (‘Retail Trade’)
for matters of comparison. In total, the US sector resolution of the enlarged MRIO table is
71. All sector mappings that were applied are provided as supplemental material.

Using GDP-by-industry data as refinement proxies (d = 3), the algorithm approximates
each sub-flow as follows:

Z(Algo)

iμr→js = Z(3)
iμr→js = Z(3, approx.)

iμr→js = Zir→js · GDPiμr

GDPir
∀iμ ∈ Ii. (9)

Since a refinement proxy at level d = 3 is given for each sub-flow, the adjustment
procedure is not applied and the quality measure is Qiμr→js = 3 for all sub-flows.

We now compare the sub-flows generated by the algorithm to aggregated data of the
heterogeneous Eora MRIO table. With regard to interregional outgoing flows, we calculate
the relative deviation ρiμr→js of each sub-flow Z(Algo)

iμr→js computed by the algorithm to its
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12 L. WENZ et al.

FIGURE 2. Relative deviation of approximated flows from available data (in %).

Notes: The matrices show the relative deviation for each sub-flow within the USA as well as for each
sub-flow between the USA and Bangladesh from its counter-part in the Eora MRIO table. Rows refer
to output and columns to input flows. If both flows are smaller than 1M USD (per year), the relative
deviation is set to 0%. It is cut off at 100%. Hatched areas denote non-zero deviations from zero
values in the corresponding Eora table. Except for Bangladesh∗ all sub-flows are approximated by
data on GDP-by-industry for 2011. Bangladesh∗ indicates an approximation by data on export for
the same year.

counter-part Z(Eora)
iμr→js given by Eora:

ρiμr→js =
|Z(Algo)

iμr→js − Z(Eora)
iμr→js|

Z(Eora)
iμr→js

. (10)

For small flows Z(Algo)

iμr→js and Z(Eora)
iμr→js the relative deviation might be large even if the

absolute difference is not. Thus, we set ρiμr→js to zero if both values are smaller than 1M

USD. If the Eora sub-flow is zero (Z(Eora)
iμr→js = 0) while the corresponding algorithm flow

Z(Algo)

iμr→js is larger than 1M USD, the relative deviation cannot be computed. The relative
deviations for intraregional incoming and outgoing flows and the interregional incoming
flows are calculated analogously.

Figure 2 shows a matrix of the relative deviations for all sub-flows within the USA as
well as matrices of the relative deviations for interregional incoming and outgoing flows
(here, exemplarily between USA and Bangladesh).
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 13

As many of the flows between Bangladesh and the USA are rather small, the relative
deviation is often set to zero. The relative deviation is also zero for flows of sectors that
are not disaggregated. Flows within the USA are mostly larger and the relative deviation is
set to zero less often. Here, many sub-flows given by the algorithm are rather different to
those of the inhomogeneous Eora table and the relative deviation exceeds 100% in many
cases.

Equation 9 implies that the ratio of the GDP-by-industry of a 71 subsector and the
GDP-by-industry of its 26 superordinate sector is used to derive all outgoing flows of the
subsector from those of the superordinate sector. For example, the 71-subsector ‘Computer
and electronic products’ contributes about 44.8% to the GDP-by-industry of its superor-
dinate sector ‘Electrical and machinery’. The algorithm transfers this percentage to all
its outgoing and incoming flows: if the base table denotes that the US sector ‘Electrical
and machinery’ delivers (receives) y (in M USD) to (from) an arbitrary regional sector,
the refined table will indicate that ‘Computer and electronic products’ delivers (receives)
0.448 · y (in M USD) to (from) this site. The results of the disaggregation procedure could
hence be further improved if proxies were used that distinguish between export, import
and intraregional flows.

In a next step, we use export data (d = 6) that is also provided by BEA as proxies for
the disaggregation of the interregional outgoing flows.

Z(Algo)

iμr→js = Z(6)
iμr→js = Z(6, approx.)

iμr→js = Zir→js · Ziμr→
Zir→

∀iμ ∈ Ii. (11)

Comparing the newly approximated flows Z(Algo)

iμr→js to their corresponding Eora flows

Z(Eora)
iμr→js, we now find a smaller relative deviation (calculated analogous to Equation 10)

than for the approximation by GDP in many cases. Bangladesh* in Figure 2 shows the
results for all outgoing flows from the USA to Bangladesh.

The quality of the algorithm’s outcome has thus increased by the use of a higher ranked
proxy. Still, the refinement proxy in Equation 11 only comprises information on the general
export structure and did not explicitly refer to the target region or the target sector. The
results could be further improved by the use of refinement proxies revealing trade patterns
between the USA and Bangladesh.

This example allowed us to test the performance of our algorithm and to contrast its
result to available data. Since the algorithm only requires basic operations, its performance
was computationally not demanding. The comparison to available data at the same sector
level showed that the approximated sub-flows can deviate significantly from their ‘real’
values if only few or rough proxy data (here data on GDP) are available. We further learned
that the quality of these approximations improves if more detailed, that is, higher ranked,
proxies are also used. One shortcoming of this example was that the second part of the
algorithm, the adjustment step, was not required. We will address this technique in the
second example.

3.2. Example 2: Multi-sourced Regionalization of the USA

After having performed a sectoral disaggregation, we focus on regionalizing the USA into
its 50 states and the District of Colombia. Since the previous example did not illustrate the
adjustment part of the algorithm, we now choose a performance design that provides for it.
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14 L. WENZ et al.

As base table we use the homogeneous Eora MRIO table for 2011. We firstly approximate
all (inter- and intraregional) outgoing flows from the agricultural sectors of the 51 US states
by data on subregional GDP (d = 2) provided by BEA for 2011 (BEA, GDP by State,
2011). Secondly, we approximate the outgoing flows for some states with the help of their
GDP-by-agriculture (d = 4) that is also made available by BEA (BEA, Regional Data,
2011). The outgoing flows of all other states are subject to the adjustment step. We com-
pare the results of both algorithm procedures to data provided by the Economic Research
Service of the USDA (USDA-ERS, 2014).

We start the refinement algorithm by entering the subregional GDP (d = 2) of each state
as refinement proxy for its sub-flows. Let iagr denote the agricultural sector. The algorithm
then approximates the outgoing agricultural flows of each US state as follows:

Ziagrrλ→js = Z(2)
iagrrλ→js = Z(2, approx.)

iagrrλ→js = Ziagrr→js · GDPrλ

GDPr
∀rλ ∈ Rr. (12)

Since all refinement proxies are ranked at the same d-level, the adjustment step of the
algorithm is not required and the quality measure Qiagrrλ→js = 2 is assigned to each flow.

Figure 3(i) shows the resulting total agricultural output for each state, that is, the sum
Xiagrrλ

= ∑
s

∑
j Ziagrrλ→js of all its outgoing flows (except flows to final demand) from the

agricultural sector.
We have already discussed the shortcomings of GDP as refinement proxy. If we com-

pare Figure 3(i) to information provided by the USDA, these limitations are stressed. The
USDA ranked all states except Alaska, Hawaii and the District of Colombia according
to their farm output for the years 1960–2004 (USDA-ERS, US Agricultural Productivity,
2004). Comparing the information for 2004 to our results, we find the following: a state,
like New York that contributes strongly to the overall GDP of the USA, is allocated a
huge agricultural output. It is, however, only ranked at position 26 by USDA. States like
Iowa and Kansas that are on the contrary ranked at positions 2 and 7 according to their
agricultural output but have comparably small overall GDPs contribute less to the total
agricultural output of the USA according to our approximation.

We address these inadequacies by complementing, exemplarily, the previous refinement
proxies of Iowa, Kansas and New York by GDP-by-agriculture. Let the subset of these
three states be RIKN

r . The outgoing flows of the agricultural sectors in Kansas, Iowa and
New York are then approximated as follows:

Ziagrrλ→js = Z(4)
iagrrλ→js = Z(4, approx.)

iagrrλ→js = Ziagrr→js · GDPiagrrλ

GDPiagrr
for rλ ∈ RIKN

r . (13)

We assume that for all other states rλ /∈ RIKN
r a GDP-by-agriculture is not given. Hence,

the corresponding outgoing sub-flows are adjusted:

Ziagrrλ→js = Z(4)
iagrrλ→js =

⎛
⎝Ziagrr→js −

∑
λ′∈Ed

Z(4)
iagrrλ

′→js

⎞
⎠ · Z(3)

iagrrλ→js∑
λ′ /∈Ed

Z(3)
iagrrλ′→js

∀rλ /∈ RIKN
r .

(14)
The algorithm distributes the difference between the initial aggregate flow and the

sum of its sub-flows approximated at level d = 4 equally among all remaining sub-flows
considering their value at the precedent level.
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 15

FIGURE 3. Total agricultural output of each US state.

Notes: For each state the maps show the sum of all outgoing flows from its agricultural sector. In (i)
these flows are approximated by data on regional GDP for the year 2011. In (ii) the flows of Iowa,
Kansas and New York are approximated by data on regional GDP-by-agriculture for 2011. All other
agricultural flows are approximated by regional GDP data (2011) first and then adjusted. The last
map (iii) shows data provided by the USDA on total farm outputs for the year 2004 (for Alaska,
Hawaii and the District of Colombia the data are not provided).

The following quality measures can be assigned to the approximated and adjusted flows,
respectively:

Qiagrrλ→js =
{

2 if rλ /∈ RIKN
r ,

4 if rλ ∈ RIKN
r .

(15)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 1

5:
31

 0
5 

Fe
br

ua
ry

 2
01

5 



16 L. WENZ et al.

Figure 3(ii) shows the resulting total agricultural output of all states. In contrast to the first
map, the agricultural outputs of Kansas and Iowa have increased, while their counter-part
in New York has diminished.

Due to the adjustment step of the algorithm the outgoing flows of the agricultural sectors
in all other states have also changed. However, since the adjustment procedure distributes
differences across all remaining subregions consistently to their previous magnitude, their
shares remain the same.

Apart from the rankings, the USDA provides data on the implicit quantities of farm
outputs by state. Figure 3(iii) shows these data for 2004. Comparing all three maps, we
find that (ii) approaches (iii) better than (i) does. There are, however, still large deviations.
Particularly, the Mid-Western states have a much higher agricultural output (relative to the
overall agricultural output of the USA) according to USDA data than they have in our first
(Figure 3(i)) and second (Figure 3(ii)) approximations. Our results can further approach
the data provided by USDA if agricultural GDP is used as a refinement proxy for each
state.

3.3. Embedding of the Refinement Algorithm within the zeean Data Project

Even though the algorithm allows for a regional or sectoral disaggregation of an MRIO
table based on few data, the precision of the approximated flows increases as more refine-
ment proxies at a high d-level are available. In order to yield MRIO tables not only of high
resolution but also of high data quality, we integrated the algorithm into the community
data platform zeean (www.zeean.net). This platform has recently been launched to initiate
a community effort to seek, collect and provide detailed information on economic inter-
dependencies. Building on available data from the Eora MRIO database, zeean enables
registered users to enlarge the database by entering further data on GDP, exports, imports
and other economic flows. According to the principles of Wikipedia, this information is
planned to be cross-checked and validated by other users. The idea is that, although many
data are openly available, a community effort is required to assemble it.

By combining the zeean database and the refinement algorithm, we aim at facilitating
the construction of MRIO tables at any sector and region detail. Given a target resolution of
sectors and regions, the algorithm will use the most suitable refinement proxies available
in the zeean database to construct an MRIO table accordingly.

4. CONCLUSIONS

We presented an algorithm to refine existing MRIO tables regionally and/or sectorally. The
algorithm derives flows on the subregional and subsectoral level from those of the initial
table by iterating the following two steps. First, all sub-flows within a specific region or
sector are approximated with the help of refinement proxies. These proxies do not have to
be homogeneous but can be deduced from different data like GDP, exports, imports and
other economic indicators (multi-sourcing approach). Each proxy is assigned a level of
detail, d, that reflects its information content with regard to the sub-flow to be approximated
(Table 1). Secondly, all sub-flows that were calculated by the use of refinement proxies of
a lower d-level are adjusted using those sub-flows that were approximated at a higher
d-level. This step guarantees that the sub-flows match the superordinate flow in sum.
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REGIONAL AND SECTORAL DISAGGREGATION OF MRIO TABLES 17

Our approach provides a framework to obtain an MRIO table at any sectoral and regional
detail even when only few proxy data are available. The computational effort is low and
no additional data processing is required. Due to the adjustment step of the algorithm,
the refined table can easily be updated at a later point in time if a proxy is available that
is assumed to be better suited for approximating one of the sub-flows. On the downside,
the resulting MRIO sub-flows are error-prone. Their accuracy depends on the information
content of the refinement proxies chosen for their and their surrounding sub-flows’ approx-
imations. It is also subject to the reliability of the proxy data and of the underlying base
table, which cannot be judged by the algorithm. Depending on these factors, it should be
thoroughly weighted whether a coarser but more reliable MRIO table is preferred or a less
accurate but more detailed one.

For many purposes and research questions, particularly in the context of disaster impact
analysis and I–O-based LCA, the algorithm may generate a sufficient and easily com-
putable MRIO table at high regional and sectoral detail. The algorithm has been integrated
into the community data platform zeean where it is used to yield economic flow data at a
high level of region and sector detail departing from the Eora MRIO database.
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